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Abstract

In this paper we propose a natural approach to characterizing genomic sequences, based on
occurrences of fixed length words (strings over the alphabet {4,C,G,T}) from a sufficiently
large set W of arbitrary (in general case) words. According to our approach, any genomic
sequence can be characterized by a histogram of frequencies of imperfect matching of words
from the set W that is called a compositional spectrum (CS). The specificity of CSs is man-
ifest in a reasonable similarity of spectra obtained on different stretches of the same genome
and, simultaneously, in a broad range of dissimilarities between spectral characteristics of differ-
ent genomes. The proposed approach may have various applications in intra- and intergenomic
sequence comparisons. () 2002 Elsevier Science B.V. All rights reserved.

Keywords: DNA sequences; Set of words; Sequence comparisons; Compositional spectra; Imperfect matching

1. Introduction

Significant progress in genome structure and evolution has been made in sequenc-
ing full genomes of many viruses, bacteria and some eukaryotes, including humans,
Drosophila, yeast, nematode, and significant parts of some plants (in particular
Arabidopsis and rice) (http://www.ncbi.nlm.nih.gov/). The era of comparative genomics
is advancing rapidly. The overriding question is how do we deal with, interpret and use
all this new information? Can it be used by sequence comparison to highlight enigmas
and mysteries of genome organization dynamics and evolution?
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Several types of genome analysis could be developed on the basis of frequency
of words. For example, within the framework of linguistic analysis, one can estimate
(derive) a set of certain words (dictionary) from given sequences [1—6] and its various
characteristics, in particular, from the information viewpoint [7-9]. Many linguistic
attempts aimed to characterize genomic sequences through sets of all used words with
lengths not exceeding some threshold [2,4,10,11]. Note, that the typical word size of
the nucleotide language is found to be 3-5 [2,4,12].

The formal-statistical approach characterizes a DNA sequence by frequencies of
words of the given class [13,14]. In particular, in this way the frequencies of words that
are, by some measure, over- or under-represented in relatively large target sequences
can be evaluated [15,16]. An overview of statistical and probabilistic properties of
words, as occurring in the analysis of biological sequences, is given in Ref. [17].

In this study, our purpose is to introduce a natural measure for genome compar-
isons that could be called “linguistic” as well, because it also deals with “words”,
albeit in a different way from previous studies. For a relatively small arbitrary set of
fixed-length words, some specific pattern, referred to as a “compositional spectrum”,
could be defined. A compositional spectrum is the distribution of frequencies of im-
perfectly matching selected words calculated over large genomic stretches (e.g. N ~
5 x 10°-10° bp). For construction of a spectrum we propose to choose words length
not < 8 (in fact, 8-15). Our analysis showed that compositional spectra are informa-
tive for intragenomic and intergenomic comparisons and highlight in-depth evolutionary
patterns and processes.

2. Basic definitions
2.1. Compositional spectra of sequences

In the text of this paper, we use the terms ‘biosequence’ or ‘genomic sequence’ to
denote unspaced text over the four-letter alphabet D = {4,C,G,T}. A string of length
L over the alphabet D will be referred to as word (oligonucleotide) of length L. If x
is a substring of a string S, we will assume that word x has a perfect occurrence in
the target sequence S. We assert that word y has an imperfect occurrence in S if there
exists a substring x of S, and the distance (in a given metric space) between x and y
is less than a threshold (in the given metrics). We employed two distance metrics for
counting imperfect occurrences of a word:

(1) Word x is an imperfect occurrence of w; in S if Hamming distance between word
w; and word x is less than a given r. This approximate matching can be denoted
as “r-mismatching” (see also Refs. [19,20]).

(2) Word x is an imperfect occurrence of w; in S if the smallest weighted sum of
mismatches, insertions, and deletions is less than a given ». This sequence metrics
is well known in sequence-alignment applications [18].

Let us consider a set W of n different words w; of length L, n <4L ) where 4 is the
total number of different words of length L. By m; we denote the number of imperfect
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Fig. 1. Examples of compositional spectra of various species, based on any set of words . Length of a
word in W is 10 (L=10). Number of words is 200 (n=200), »-mismatching with »=2. (A) Shows spectra
of long contigs from human chromosomes with range of C + G contents from 0.36 to 0.50; ordering by
chromosome X. (B) Shows spectra of pairs of different contigs from four genomes, ordered in each pair by
the first contig (A). (C) Shows spectra of 7 contigs, ordered by human X-chromosome with different level
of similarity to X-chromosome. For designations of the species see Table 1.

occurrences of word w; of the set /¥ in a target sequence S: m; = occ(w;|S). Now let
M = Xm;. The frequency distribution F(W,S): {f; = m;/M} will be referred to as a
compositional spectrum of the sequence S relative to the set .

2.2. Visualization of compositional spectra

The main application of the method of compositional spectra is in sequence com-
parison. Let S1,5,,...,S; be genomic sequences that we want to compare relative to a
given set . Clearly, a given order of words w; in W predetermines the shape of the
compositional spectrum of §; relative to . Indeed, a compositional spectrum, which
is actually a frequency distribution on set /', may be presented as a distribution plot,
where X-axis corresponds to the running index j of words w;, and Y-axis presents
frequencies f;; of w;. For better visualization of multiple spectra, one can choose to
order the words w; € W non-randomly, but naturally related to a descending order of
Jij frequencies relative to any S, say S = S;. In other words, we can denote such an
arrangement Ord(W,S), that word w; is followed by word w; (i > j) if and only if
m; = m; (m; = occ(w;]Sp)). In case of equality m; = m; each relative ordering of w;
and w; is permitted. This order of words w; in W is non-random and derives from
the target sequence composition. Such ordering facilitates comparisons of a given set
of spectra relative to any chosen one (see compositional spectra of a few species in
Fig. 1).
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2.3. Distance in the space of compositional spectra

Based on any chosen set of words W it is possible to measure the difference
between any two sequences. Namely, by definition, a compositional spectrum of the
sequence S relative to the set W is a frequency distribution F(W,S): {f, =m,/M} on
set W. Then, clearly, standard Euclid distance may be used, but our analysis showed
this is not the best choice from the viewpoint of sensitivity in detecting sequence
dissimilarities (unpublished results). We propose to use two measures, d; and d,
related to the number of permutations in a vector and based on rank correlations
p and t (for definition see Ref. [21]). Let us denote dy =1 — p, and d, =1 — 7,
0 <d,, dy <2. These distances correspond to heuristically acceptable understanding
of proximity between two orderings. Therefore, if distance between two sequences
d(S;,S;) = 0 (with d being either d; or d,), then their spectra f; and f;; are iden-
tically ordered and we can say that “S; is compositionally congruent to S;”. In case
of the maximal distance d(S;,S;) = 2, spectra S; and S; are ordered in the strictly
reversed order. It seems intuitively obvious that distance between such sequences
should be larger than between two unrelated (random) sequences (when p,7 =0 and
d=1).

3. Compositional spectra as random objects

For any given parameters L and n we shall consider a set W as a random sam-
ple from the set of all possible words, with a sampling procedure that can be rep-
resented as a stochastic procedure of words generation. Let us consider a few
examples.

(1) Let the words be produced by adding sequentially new letters (out of the
four-letter alphabet) with equal probability of appearance of each letter at the cur-
rent position. We shall name such stochastic procedure wuniformly random and any
random set W of words produced by this procedure will also be referred to as a uni-
formly random set. Then, a compositional spectrum F(W,S) for each S is a random
spectrum. Clearly, the distance between any two random spectra is also a random
variable.

(2) Every probability vector [ py, p2, p3, pal, (p1+ p2+ p3+ pa=1, p; = 0) present
allows generation of a set of words W with fitting frequencies of letters 4, C, G, T.
We shall call such a random set W compositionally random. In these notations uni-
formly random set (0.25,0.25,0.25,0.25) is a compositionally random set.

(3) Markovian random set W arises, if each word w; is generated by a predefined
Markov chain model (probability of a letter in a given position of a word is function
of k previous letters of the word).

(4) A random set of words sampled from any fixed genome sequence can also serve
as a random set ¥, but here the sampling is from a universe of a more complex origin.
Such set W can also be used for analyzing relationships between other genomes.

Selection of such W-generating procedures produces a corresponding class of com-
positional spectra.
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4. Results and discussion
4.1. Data

Genomic sequences of 48 species of Eukaryota, Eubacteria, and Archaeca were used
in this study (Table 1). All sequences are rather long (= 2-5 x 10° letters) and rep-
resent substantially large parts of genomes. These included either continuous stretches
(contigs) sampled from databases or summed-up composite sequences combined from
a few contigs to produce two different target sequences, each of 200—500 kb for each
species. In a few cases, the available material was only sufficient to build one such
target.

4.2. Compositional spectra of DNA sequences

From the fact that one employs a random set of words W, it immediately follows
that the compositional spectra F(W,S) and F(W,S’) of sequences S and S’ are also
random constructs, hence the distance d(S,S’) is a random value itself. Let us ana-
lyze the distribution of random variable d| (or d) produced by uniformly random set
W. The main empiric result is that for d; (as well as d;) the measure d(S,S") dis-
played statistical stability, when S and S’ are genomic sequences. Indeed, distribution
of d(S,S") appeared to be close to normal, and its standard deviation decreases when
the number of words »n in set W rises. For 100 uniformly random sets # and for
every pair of species, i and j, (i,j from our collection of 48 species, i # j) we calcu-
lated standard deviation ¢;; of distances d; and d, over all tested sets of W. Averaged
standard deviation across all possible pairs 7, j

5:%2% (1)

can be considered an indicator of robustness of the measure for given L, n, r.
Taking L = 10, and » = 2, and varying n, we obtained the results shown in
Table 2.

These results show that the consistency of the genome comparisons by means of
compositional spectra increases with #, albeit till some saturating point corresponding
to n ~ 200. Thus, the size n =200 of the set W is a reasonable asymptotic choice.
Similar results were obtained for compositionally random variables /' and Markovian
random sets (data not shown). Thus, distance estimations between sequences obtained
on the basis of a certain choice of W -generating procedure are sufficiently consistent.

Table 1
Mean standard distance (d;) deviation between two genomic sequences as a function of number of words
in W

n 25 50 100 200 300
o 0.15 0.10 0.09 0.05 0.05




Table 2

List of considered species, lengths of fragments (bp) and C + G contents

Species name Size (bp) C+G Species name Size (bp) C+G
Eukaryotes 34A—Thermus thermophilus 198,765 0.68
1—Homo sapiens chr. X* (NT 011528) 539,188 0.40 35A—Thermotoga maritima* 370,054 0.46
2—Homo sapiens chr. Y* (NT 011864) 539,595 0.40 35B—Thermotoga maritima* 366,191 0.46
3—Homo sapiens chr. 1* (NT 004302) 539,495 0.36 36A—Aquifex aeolicus™ 399,976 0.43
4—Homo sapiens chr. 3* (NT 002444) 543,554 0.46 36B—Aquifex aeolicus™ 400,002 0.44
S5—Homo sapiens chr. 4* (NT 006051) 535,847 0.44 37A—Neisseria gonorrhoeae 350,020 0.53
6—Homo sapiens chr. 6* (NT 007122) 599,072 0.43 37B—Neisseria gonorrhoeae 355,192 0.54
7—Homo sapiens chr. 7* (NT 007643) 447,791 0.36 38A—Neisseria meningitidis™ 361,259 0.51
8—Homo sapiens chr. 11* (NT 008933) 506,578 0.37 38B—Neisseria meningitidis™ 373,905 0.52
9—Homo sapiens chr. 12* (NT 009410) 532,934 0.49 39A—Campylobacter jejuni* 399,984 0.31
10—Homo sapiens chr. 13* (NT 009796) 537,882 0.38 39B—Campylobacter jejuni* 400,002 0.30
11—Homo sapiens chr. 20* (NT 011328) 540,270 0.44 40A— Haemophilus influenzae™* 399,863 0.38
12—Homo sapiens chr. 22* (NT 001454) 701,877 0.50 40B—Haemophilus influenzae* 399,981 0.38
13A—Mus musculus 395,579 0.48 41A—Chlamydia trachomatis* 399,976 0.41
13B—Mus musculus 38,1917 0.47 41B—Chlamydia trachomatis* 400,002 0.42
14A—Gallus gallus 94,266 0.56 42A—Clostridium acetobutylicum 347,567 0.32
15A—Oryzias latipes (Medakafish) 100,248 0.45 42B—Clostridium acetobutylicum 340,105 0.31
16A— Xenopus laevis 190,689 0.45 43A—Treponema pallidum™ 275,933 0.52
17A—Caenorhabditis elegans™ 438,825 0.36 43B—Treponema pallidum™ 275,984 0.54
17B—Caenorhabditis elegans* 350,000 0.36 44 A— Pseudomonas aeruginosa™ 345,206 0.65
18A—Drosophila melanogaster* 594,587 0.43 44B— Pseudomonas aeruginosa™ 355,163 0.67
18B—Drosophila melanogaster* 637,156 0.42 45A—Porphyromonas gingivalis 399,961 0.48
19A—Arabidopsis thaliana 431,319 0.36 45B—Porphyromonas gingivalis 399,972 0.47
19B—Arabidopsis thaliana 327,859 0.36 46 A—Actinobacillus actinomycetemcomitans 338,681 0.45
20A—A. thaliana mitochondrial genome 365,493 0.45 46B—Actinobacillus actinomycetemcomitans 344,947 0.45
21A—Saccharomyces cerevisiae® 800,004 0.38 47A—Rickettsia prowazekii* 276,000 0.29
21B—Saccharomyces cerevisiae™ 1,200,006 0.39 47B—Rickettsia prowazekii* 276,000 0.29
22A—Leishmania major 1,71,770 0.62 48A—Chlamydia pneumoniae* 300,017 0.39
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Eubacteria

23A—Bacillus subtilis*
23B—Bacillus subtilis*
24A—Streptococcus pyogenes
24B—Streptococcus pyogenes
25A—Mycoplasma genitalium™
25B—Mycoplasma genitalium*
26A—MYycoplasma pneumoniae*
26B—MYycoplasma pneumoniae*
27A—Mycobacterium tuberculosis™*
27B—Mycobacterium tuberculosis*
28 A—Synechocystis sp*
28B—Synechocystis sp*
29A—Helicobacter pylori*
29B—Helicobacter pylori*
30A—Escherichia coli*
30B—Escherichia coli*
31A—Enterococcus faecalis
31B—Enterococcus faecalis
32A—Deinococcus radiodurans
32B—Deinococcus radiodurans
33A—Bacillus stearothermophilus
33B—Bacillus stearothermophilus

579,647
399,002
690,238
696,345
287,593
288,000
199,523
199,523
358,717
358,913
349,960
350,000
320,335
320,387
519,942
542,976
399,976
399,956
399,971
399,983
378,629
389,721

0.43
0.41
0.38
0.39
0.33
0.30
0.40
0.40
0.65
0.65
0.48
0.47
0.39
0.38
0.51
0.51
0.37
0.37
0.67
0.66
0.53
0.52

48B—Chlamydia pneumoniae™
49A—Borrelia burgdorferi*
49B—Borrelia burgdorferi*

Archaea

50A—Halobacterium sp. Plasmida*
S1A—Pyrococcus horikoshii*

51B—Pyrococcus horikoshii*

52A—Pyrococcus abyssi*

52B—Pyrococcus abyssi*

53A—Archaeoglobus fulgidus*
53B—Archaeoglobus fulgidus*
S4A—Methanococcus jannaschii*

54B— Methanococcus jannaschii*
55A—Methanobacterium thermoautotrophicum™
55B—Methanobacterium thermoautotrophicum™
56A—Aeropyrum pernix*

56B—Aeropyrum pernix*

57A—Sulfolobus solfataricus

57B—Sulfolobus solfataricus

58 A—Methanococcus maripaludis

59A— Methanosarcina mazeii

300,000
399,967
399,979

191,652
399,992
400,002
360,000
360,000
399,986
400,002
399,868
399,977
344,374
344,455
400,002
400,002
584,947
308,779
116,645
60,692

0.41
0.29
0.29

0.58
0.42
0.42
0.45
0.45
0.48
0.48
0.32
0.32
0.49
0.50
0.58
0.57
0.36
0.36
0.35
0.45

*Contigs are marked by stars whereas sequences composed of several contigs are unmarked.
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Fig. 2. Distribution of intra- (A) and intergenomic (B) distances d; for 48 species. Calculations were
performed for 100 realizations of uniformly random sets of words of length 10, || =200 (r-mismatching
with » =2 was used in calculations of the spectra).

4.3. Intra- and intergenomic relationships of compositional spectra

Compositional spectra may be used for characterization of intra- and intergenomic re-
lationships. We found that, as a rule, intragenomic distances are smaller than
intergenomic distances (a few exceptions exist and are partially discussed below). In
other words, for every chosen set of words, distance between two fragments from the
same genome tends to be smaller than distance between a fragment from the selected
genome and any fragment belonging to another genome. In Fig. 2, we show histograms
of intra- and intergenomic distances.

Let us consider an application of the method to the study of intragenomic heterogene-
ity. The analysis was performed on 22 complete prokaryotic genomes. Each genome
was broken down into overlapped fragments of length of 300—400 kb with overlap-
ping of 100 kb. Compositional spectra were computed for all these fragments, and two
opposite cases are presented in Fig. 3. The case of small smooth changes in spec-
tra (homogeneous spectral composition) is typical for a broad majority of the studied
genomes and are presented in Fig. 3A. However, some species have non-homogeneous
genomic composition, and our technique is sensitive to this feature. In Fig. 3B, we
present spectral distribution of Borrelia burgdorferi. Some of the tested segments have
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Fig. 3. Compositional spectra of contiguous fragments of complete genomes of Mycobacterium tuberculosis
(A) and B. burgdorferi (B).
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Fig. 4. Effect of C + G content on d;-distance between genomic sequences. Pairwise comparison of 48
genomic sequences (see description in Section 4.1) was conducted using random uniformly word sets
Wi (i =1,...,100), with || =200 and word length 10, as elsewhere. The derived d; values (Y-axis) are
displayed against the absolute values of the differences in G + C content (D¢ g—represented by X-axis).
(A) Combined results of all pairwise (48 x 47/2) comparisons, each conducted over 100 sets ¥; (B) and (C)

combined results of all pairwise comparisons for two different sets W taken randomly from the foregoing
100 sets.
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different spectra and appeared to be far away from one another. This inconsistency
can easily be explained by the recent finding of Mclnerney [22], who revealed that
the genome of B. burgdorferi has two different patterns of codon usage. Thus, our
method can identify heterogeneous genomes. Noteworthy differences among composi-
tional spectra of compared sequences could not be explained exclusively by variation
in G+ C content. For example, differences within 10%-range in G + C composition of
two fragments from the same genome do not have any considerable influence on their
distance, whereas this may not be the case for intergenomic distances for certain pairs
of species (Fig. 4). The figure shows that when D¢, g-distance is < 20-25% there is
virtually no relationship between D¢, - and d-distance, whereas big differences in
G + C content have a dominating influence on d;.

5. Conclusions

Analyzing structural heterogeneity of DNA sequences at the supragenic level is con-
sidered one of the main targets of the current stage of genomic studies. This is an
especially challenging problem because gene-coding material constitutes a relatively
small part of the genome for most of the eukaryotes. The natural and simple approach
proposed in this study seems to be especially useful for examining inter- and intrage-
nomic relations. We found that relative frequencies of appearance of individual words
taken from an arbitrary set of words of a fixed length result in a species-specific pattern
(referred to as a “compositional spectrum”). The obtained pattern proved to be repro-
ducible (among different samples from the same genome sequence) given a sufficiently
large set of words and a sufficiently large genomic DNA sample.

The proposed spectra are multivariate descriptions of the genomes and genome frac-
tions, hence invite a distance that could allow for quantitative comparisons between
genomes.
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