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ABSTRACT

We introduce a novel, linguistic-like method of genome analysis. We propose a natural
approach to characterizing genomic sequences based on occurrences of fixed length words from
a predefined, sufficiently large set of words (strings over the alphabet {A, C, G, T}). A measure
based on this approach is called compositional spectrum and is actually a histogram of imperfect
word occurrences. Our results assert that the compositional spectrum is an overall characteristic
of a long sequence i.c., a complete genome or an uninterrupted part of a chromosome. This
attribute is manifested in the similarity of spectra obtained on different stretches of the same
genome, and simultaneously in a broad range of dissimilarities between spectral representations
of different genomes. High flexibility characterizes this approach due to imperfect matching and
as a result sets of relatively long words can be considered. The proposed approach may have
various applications in intra- and intergenomic sequence comparisons.

KEYWORDS: DNA linguistics; sequence analysis; statistical geometry; rank
correlation.

1. INTRODUCTION

Methods of measurement of relatedness between two genetic sequences without
performance of pairwise alignment have appeared since the early eighties. These
methods are called linguistic because they are analogous to the formal linguistic
analysis of human texts. There are methods based on calculations of observed
occurrences (frequencies) of oligomers and their distribution, and those based on
deviations between the observed and the expected occurrences (contrast words,
genome signatures) in biological sequences as well. Brendel ef al. (1986) introduced
the concept of a meaningful word as an element of an organism-specific vocabulary in
the DNA language. The authors tried to use an analogy to human languages in
identifying words and compilation of vocabularies. As a method of comparison
between two sequences it was proposed to construct the complete deviation sets of the
sequences (vocabularies of contrast values) and determine a distance between these
vectors instead of assessing distance based on sequence aligment. The measure of the
deviation of the observed frequency of a word from its expected occurrence in the
given sequence was introduced in Brendel et al. (1986) and slightly corrected in
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Pevzner et al. (1989). Pietrokovski et al. (1990) proposed usage of the linguistic
similarity measure for fast and simple preliminary estimation of relatedness between
two sequences. Definition of linguistic similarity was related to the notion of contrast
words and vocabularies. The contrast value for each word could be calculated as the
difference between its observed and expected frequencies in the given sequence. The
contrast values of all the words of a given length k& form the contrast k-vocabulary. The
authors proposed to use a correlation coefficient C; formula to compare two such
vocabularies of the same word length k. Pietrokovski e al. (1990) claimed that usage
of relatively small &k (2 < k£ < 6) could satisfy all practical needs of a researcher. They
proposed to use an integral value S, s = (C, + C; + C4 + Cs) for quantitative description
of the linguistic similarity between sequences (Pietrokovski et al., 1990; Pietrokovski,
1994). Following this approach, Karlin introduced the measure of sequence similarity
based on dinucleotide relative abundance extremes (Karlin and Burge, 1995), and
widely used it for sequence taxonomy (Karlin, 1998; Karlin and Mrazek, 1997).

Recently, we proposed a natural approach to characterizing genomic sequences,
based on imperfect occurrences of fixed length words from a sufficiently large set
(Kirzhner et al., 2000; Kirzhner et al., 2002). Following this approach, any genomic
sequence can be characterized by a histogram of frequencies of imperfect matching of
fixed length words from the selected set that we have named compositional spectra
(CS). In general, this approach presumes parameter adaptation to the concrete problem
formulation and the targeted set(s) of species.

2. COMPOSITIONAL SPECTRUM OF DNA SEQUENCE

Definition

Let us take a set W of n different oligonucleotides (words) w; of length L. Clearly,
n < 4, where 4" is the total number of different oligonucleotides of length L. For each
word w; of the set W and any chosen large target sequence S one can calculate the
observed number of matches mz, =#(w,), allowing for a preset number r of
replacements of symbols for each matching location, say 0, 1, or 2 mismatches (i.e.,
r =2). This approximate matching can be denoted as 'r-mismatching'. Now let
M= 2/7? The frequency distribution F(W; S) of f; = m/M will be referred to as
'‘compositional spectrum' of the sequence S relative to the set W. To produce the word
sets, we employed a random generator assuming equal probabilities of including each
of the four nucleotides at any current position of any word. It is noteworthy that the
foregoing approximate matching, or »-matching, allows usage of relatively long words
(say, with L =10 - 15) that otherwise would be impossible for even very large
genomes.

The results obtained in this work are mainly concerned with CS for parameters
L =10, n=200, »=2. The number of different words when L = 10 and the alphabet
contains four letters is equal to 1024 x 1024. When the error is » = 2, every word of the
set W effectively corresponds to the number of different words of length 10, not
greater than 1410+ 10(10—-1)/2 =56. Thus, the number of different words of length
10 that effectively corresponds to a set of words with » =200 does not exceed
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56x20=11,200, i.e. not greater than 1% of all possible words. In much the same way
we obtain 11x200=2,200 forr=1and 176 x 200 =35,200 for » = 3.

For the word length L =10 and » =200, the characteristics of a sequence cover
depending upon the value of  are presented in Table 1.

Table 1. Characteristics of a sequence cover depending upon the value of » for L = 10 and
n=200.

r Min % Max % | Mean % 75%

1 0.17 0.76 0.45 0.25-0.5
2 3.1 13.1 7.2 34-9.0

3 31.0 87.0 57.0 45.0-60.0

The first column of Table 1 contains the values of » = 1,2,3. In the second column,
“Min %” means the minimum percent of cover by a random set of words for all
sequences from Appendix A. In much the same way, “Max %” is determined as the
maximum percent of cover for the same set of sequences, and “Mean %” is the mean
value of cover for all sequences. However, for the majority (75% of the sequences
analyzed), we may find a narrower cover interval (Min % — Max %), which is shown
in the last column of the table.

Derivative spectra

Consider variations of the foregoing procedure to compare spectra for sets of direct
and transformed words. For any chosen set ¥, one can produce a related set of reverse
complementary words W* for example, if w;=ATCCGACGGT then
w;* = ACCGTCGGAT. Application of the above procedure with the set W' to a
sequence S will produce its own spectrum F*(W; S) = F(W*,S). Other related spectra
of the chosen set W, for example, F** (W;S) = F(W**,S), where W** is a set of mirror
sequences w;** (i.e., w;** = TGGCAGCCTA for w; = ATCCGACGGT), exist as well.

Visualization of compositional spectra

The application of the proposed concept will be illustrated on a series of examples
where CSs are employed for large-scale genome comparisons. Let § be a genomic
sequence that we want to characterize relative to a given set of words W. We use
different sets, composed of 200 words each, including a set of decamers (W), a
reverse set of decamers W*,, constructed of reverse complementary words to given
W10 and a set of 15-mers (W;s).

A given order of words w; in W predisposes a shape of the compositional spectrum
of § relative to W. A compositional spectrum, which is a vector of frequency
distribution, will be presented as a distribution plot, where the abscissa corresponds to
the running index i of w;, and the ordinate presents frequencies of w; in S. For better
visualization of multiple spectra related to a few sequences Si, S, ..., Si, an order of
words w; in W is not chosen randomly, but instead, directly related to a descending
order of f; frequencies in a certain sequence S. Let us call such an order a “reference
ranking” and denote it as Ord(W, S). This order of words w; in W related to the
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Figure 1. Compositional spectra of long stretches of genomic DNA of various species. The
abscissa represents the words of the set ' placed in some order, whereas the ordinate shows the
observed frequencies F(W, S) of the words in the sequence S. Compositional spectra (CS) of
selected species are shown, where two distantly located fragments represent each organism,
named 4 and B. For designations of the species see Appendix. (A). CS are ordered using as a
reference sequence a contig of human X chromosome (No. 1). All spectra are calculated using
the same set of words . (B). Pairs of CS of the two DNA fragments of the same genome are
shown. We ordered the set W in descending order of the observed number of matches in one of
the genomic stretches. This order of words (denoted by 4 in each group of contigs) was used to
present a spectrum of the second segment of the same genome (denoted by B). All
compositional spectra are calculated using the same set of words W;s. (C). Comparison of
spectra based on direct (W) and complementary words W*. One stretch of a genome is
represented by a spectrum F(W,, S), whereas another stretch is characterized by a spectrum
F(W*,y, S). The order of complementary words strongly corresponds to the order of direct
words.

sequence S, - notation Ord(W, Sy) - makes differences in spectrum F(W, ;) in
comparison with F(W, S;) clearly observable (see compositional spectra of a few
species in Figure 1). Figure 1A shows CSs of a few selected species S characterized by
the set of decamers Wjy. As a sequence producing the reference ranking we took the
human X-chromosome. Compositional spectra of the sequences selected for Figure 1A
present diversity of possible cases. For example, the spectra of Drosophila
melanogaster (No. 15) and the bacteria Streptococcus pyogenes (No. 21) seem similar
to a triangle histogram of Homo sapiens chr. X (No. 1). Similarity of spectra means
that more frequent words in one sequence occur frequently in the other sequence as
well. In other words, there is correlation between their compositional spectra. On the
contrary, the spectra of the bacteria Aquifex aeolicus (No. 30) do not demonstrate any
similarity to the reference spectrum no. 1 of Homo sapiens. It means that these
sequences are unrelated. The bacteria Mycobacterium tuberculosis (No. 24) and
Pseudomonas aeruginosa (No. 37) provide examples of spectra with anti-correlation
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to the spectrum No. 1 of Homo sapiens. These examples show that there are all kinds
of possible intergenomic relations. However, negative or close to zero correlations in
intragenomic comparisons have not been observed (see Figure 1B). As a rule, the
spectra of two stretches from the same genome look very similar. Even in the bacteria
Borrelia burgdorferi (No. 41), where the spectra are considerably different, correlation
between them is definitely positive. In the following section we will describe these
observations in a formal manner.

A worthy observation is that when a set of words W is sufficiently large it equally
characterizes both strands of DNA. Indeed, in Figure 1C one stretch of a genome is
represented by a spectrum F(W,, S), whereas another stretch is characterized by a
spectrum F(W*,, S). It is interesting to note that corresponding spectra proved very
similar. This effect seemingly may be explained for the prokaryotic genomes by
apparently uniform distribution of genes on both strands but it is correct for Eukarya
as well.

A measure of genome similarity

The intuitive impressions of intergenomic or intragenomic similarities and
dissimilarities can be supported by distance metrics obtained, based on the Spearman
rank correlation coefficients p and t (Kendall, 1970). Both coefficients are based on

the number of pairwise transpositions of words that transform one order into another
in such a way that words of the same rank occupy identical positions in the two
spectra. Consequently, quantities &/ =1-p and & =1-7(0<4*<2) can be
considered as distances between two spectra. The maximal distance &*=2
corresponds to strictly reverse compositional spectra, whereas the minimal distance of
zero corresponds to identically ordered spectra of the fragments. We use a notation
CS-distance for this measure.

On the basis of sampling distribution of the Spearman correlation coefficient one
can test different hypotheses regarding the similarity of compositional spectra, namely

by means of approximate test statistics a’/\/;d, where /, =/, is the sampling

d
variance of d (note that #, =1/(#—1): see Kendall and Stuart (1967)). The finite
length of the analyzed sequences S and a limited size of the source genome(s) cause
the approximate nature of these statistics. Assuming a normal distribution of the test
statistics, deviations of d from either 0 or 2 will be significant at the 0.05 level if d or

2 - d exceed 1.96/+/(#7—1), where n is the number of words in the set W. Thus, for
n =200, d<0.139 can be considered as a non-significant difference. Clearly,
corrections for multiple comparisons should be made in the case where many pairs of
species are considered simultaneously. For example, distances among different spectra
presented in Figure 1 are the following. Intergenomic distances between a fragment of
Homo sapiens (No. 1) and other fragments shown in Figure 1A calculated using the d,
measure are: d;(1,15A)=0.20; d,(1,21A)=0.20; d,(1,30A)=0.44; d,(1,24A)=1.68;
di(1,24A)=1.59. As expected, intragenomic distances are smaller: d(1,2)=0.03;
di(14A,14B)=0.03; d,;(15A,15B)=0.04; d,(24A,24B)=0.02; d,(30A,30B)=0.02;
di(41A,41B)=0.15; d,(43A,43B)=0.09. In case of the mosaic genome of Borrelia
burgdorferi (No. 41) we show all intragenomic calculations (Table 2). The complete
genome B. burgdorferi that has a length of 910724 bp, was divided into eight
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overlapping segments, each 200K in size: the first fragment is from 1 to 200,000, the
second fragment is from 100,000 to 300,000, and so on, up to the eighth, which is
from position 700,000 to 900,000. One can see that the whole genome consists of two
patches with relatively small internal distances.

Table 2. Distances d; among contiguous overlapping fragments of Borrelia
burgdorferi each 200K in size.

Con- 1 2 3 4 5 6 7 8
tigs

1 0.00 0.03 0.07 0.10 0.20 0.27 0.28 0.28
2 0.03 0.00 0.03 0.10 0.21 0.28 0.29 0.28
3 0.07 0.03 0.00 0.05 0.18 0.27 0.27 0.27
4 0.10 0.10 0.05 0.00 0.09 0.19 0.19 0.20
5 0.20 0.21 0.18 0.09 0.00 0.05 0.08 0.08
6 0.27 0.28 0.27 0.19 0.05 0.00 0.03 0.05
7 0.28 0.29 0.27 0.19 0.08 0.03 0.00 0.03
8 0.28 0.28 0.27 0.20 0.08 0.05 0.03 0.00

For the sake of comparison of CSs, we also used Euclidean distance d5 (S; S’) =
(Z((S) - £ (S™)) *)"* . However, as shown below, it is less effective.

Compositional spectra as random objects

We will consider the set I as a sample from some class of sets. Namely, we call
the set of words W uniformly random, if for each word at each position every letter of
the alphabet {4, 7, C, G} has an identical probability of appearance (0.25). To
characterize the robustness of the obtained results, we will explore 100 such uniformly
random sets W.

3. SOME STATISTICAL CHARACTERISTICS OF CS-BASED
DISTANCES
The definition of CS-distance derived by using a random set of words is correct

only in the case that the numerical values of these distances will not depend (or will
depend only slightly) on the sampled set of words .

Distance variation among contigs of different species measured by
different sets of words

Let us take an arbitrary set /"= /. Consequently, CSs can be generated for each
species. One could then calculate the CS-distance for each pair of species and this
procedure could be repeated many times for other sampled sets . The natural
expectation is that the CS-distances generated by various W; will be similar to that
generated by /. The results presented in Figure 2 demonstrate that this is indeed the
case when the size of the sets ¥ is sufficiently large. Clearly, with an increasing size
of W, variation of d(S, S’) decreases at any pair of sequences (S, S”). Thus, the chosen
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set parameters (L = 10, » = 2) for this study provides a sufficiently narrow variation of
the pairwise distances with respect to a sampling variation of the word sets.

o

n=100

l.l=3 00 ! ﬂ!".i "l

A _ I!I"iii
0 d(A,.B) 180 d(A,B) 1.8

Figure 2. The effect of the vocabulary size (n) on CS-distance. On the axis X all pairs of
sequences are ordered values by increase of CS-distance, on an axis Y corresponding values of
distances for the same pairs obtained on 100 random sets are shown. With increasing size of W,
variation of CS decreases for any pair of sequences.

Distribution of the intragenomic and intergenomic distances

Results of the intragenomic and intergenomic comparisons of spectra on the basis
of the three above considered measures (see Section 2) are presented in Figure 3. The
first column shows distributions of intragenomic distances (between sequences 4 and
B from one genome, taken for all 38 pro- and eukaryote species, generated repeatedly
using 100 random sets W,y each with n = 200 words). The second column shows the
histograms of 37x38/2 intergenomic distances (using the same procedure as with
intragenomic distances). The distances d; (Figure 3A) and d, (Figure 3B) proved to
yield quite similar results. It would be natural to prefer d; based on the fact that the
ratio of its ranges of variation for intergenomic comparisons is R; =1.84/0.20=9.2 is
two-fold of the corresponding ratio for d>: R, = (1.70/0.40) = 4.5. It is noteworthy that
both measures are similar with respect to the range of variation of intraspecific and
interspecific distances relative to the potentially possible range 0 - 2. Namely, in both,
only a small left part of the total range is not empty for the intraspecific comparisons,
and only a small right part of the total range is empty for the intraspecific
comparisons. We are very satisfied with the last fact because it means that the
maximal distances between the analyzed genomes actually approached the maximum
possible value, corroborating thereby the extremely high diversity of chosen species
(representing all three major sections of life {Archaea, Eubacteria and Eukaria}). One
more comment will be useful regarding the comparative properties of d; and d>. The
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above-mentioned two-fold difference between R; and R, is a result of two effects:
lower values of d, than d, intragenomic comparisons, and opposite ranking for
intergenomic comparisons. Both effects vote for d,. For all these reasons the measure
d; was chosen as the basis for our further study (which will be referred to as CS-
distance).

It would be of interest to compare the chosen CS-distance with the more
widespread Euclidean measures d; (Figure 3C). The inferiority of this measure
compared to the proposed CS-distance can be clearly seen from the comparison of the
obtained intergenomic distances with the highest value possible for this distance.
Indeed, unlike the CS-distance distribution where only a small right hand-part of the
total range is empty, the obtained values using Euclidean distance leave empty the
predominant (about 6/7) part of the total range.

.04
I I
A 002
0 2 200 2.0
02
B
0 4 200 2.0
160
C
I
2 20 0 2 20

Figure 3. Distribution of intragenomic and intergenomic CS-distances based on three
considered measures. (A) using Spearman rank correlation p; (B) using Spearman rank
correlation 7; (C) using Euclidian distance. The first column shows the distributions of
intragenomic distances, the second column shows the histograms of intergenomic distances.

Low sampling variation of relative ordering of species

The possibility of using d; as a measure of intergenomic distances depends on the
stability of the interspecific relationships revealed by CS-comparisons, relative to the
sampling variations of the sets W. In other words, we are interested in the ordering of
species relative to each other rather than to the numerical values of the distances.
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Consequently, we would like to test the stability of some characteristics of species
ordering with respect to variations of .

For any reference sequence i, one could determine the relative ordering of all other
sequences based on their CS-distance to i. We denote such relative ordering as i-order.
As could be seen from the above-mentioned results, CSs of two sequences of the same
genome are, as a rule, closer to each other than to any other genome. This fact does not
depend on the sampled set /7. Hence, we could interpret an ordering of sequences as a
species ordering. Let us check robustness of an i-order. We will first check the
stability of appearance of the first element in the i-order (a species with minimal
distance to the reference one). It turned out that in all species considered, the first
element did not depend on the sampled set in more than 70% of the W sets, while in 22
of 38 species the corresponding range of consistency was even 90 - 100% of the cases
(of course, with every species i we identified its closest neighbor in i-order). In all of
the cases only one alternative to the conservative first element was found. These
results indicate that close proximity measured by CS-distance does not depend on W
content.

Let us check the variation of each species j in the i-order upon W-variation
P’ (/) is a denotation of a rank of j in i-order, D, = | PUUMY—(P W) | is
the absolute value of the difference between two ranks 2/(;/#) and P (i #W"). It
appears that the mean value of D; taken over all pairs #,, W (r# s; 7,5 =1,...,100)
and all 7(/7=1,...,38), for each /=1,...,38 belongs to the interval [0.5, 2]. This means
that the positions of any species j in any two i-orders (generated by two arbitrary sets
W and /") will differ in average for not more than two steps. Correspondingly, the
close similarity of orders obtained using different word sets is reflected in a high
Spearman rank correlation (0.96 when averaged across all pairs of W and W' and all
species).

4. COMPOSITIONAL SPECTRA AND GC CONTENT

One of the objections to the proposed method may be related to a strong influence
of GC-content on the measure, both within and between species. It could be speculated
that the observed variation CS-distance is definitely related to a G+C genomic
composition but is not completely predefined by it. We performed two tests to
demonstrate this statement. The results of the first test are presented in Figure 4. This
figure is organized as a table with three columns and six rows. The top and the bottom
rows are arranged differently from the other rows. The first (top) row consists of a
spectrum related to the fragment of the H.sapiens chromosome 1 (No. 3) repeated
three times to appear in all three columns, because this spectrum serves as a reference
ranking. The second row consists of spectra related to three different human
chromosomes. The next three rows are constructed from spectra related to various
organisms, which were selected according to the G+C content of these sequences
fitting corresponding human fragments from the same column. The bottom row
presents the d;-distances between appropriate human and other sequences. All the
numbers are related to the notation of sequences in the Appendix A. Remarkably, a
distance between two human fragments is always smaller than a distance between a
human fragment and an unrelated sequence, in spite of the latter possessing G+C
composition identical to those of the human segment.
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Figure 4. Comparison of CS-distance from different parts of the Human genome and other
species with the same GC content. A First two spectra belong to Human contigs 3 and 10
accordingly. These sequences have approximately identical CG content. The other three
sequences from another species also have the same value of GC content. Values CS-distance
between everyone Human contigs up to all others also is given in the table; B The first spectrum
in this group is the same as in group A. However following (Human) contigs has the greater
contents GC and the same contents have others contigs of this group; C Similarly in group about
the First spectrum in this group same as in group A and B and others contigs have higher GC
content than in group B.

We also performed randomization tests to study the dependence of a d;-distance
upon G+C content. Every organism in our database is presented by two fragments: 4
and B. For the purpose of this test, fragments B were randomized by partial
reshuffling. GC- or AT-reshuffle means that only nucleotides G and C or 4 and 7,
respectively, participated in the reshuffling. Distributions of such “pseudo-
intragenomic” distances between an original segment 4 and reshuffled sequence B are
presented in Figure 5 in the upper part of it (part I). Distributions of “pseudo-
intergenomic” distances are presented in the part II of Figure 5. Figure 5 is constructed
analogously to Figure 3. Comparison of Figures 3 and 5 leads us to the conclusion that
even partial reshuffling, while not only the G+C content is preserved but also all A and
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Figure 5. Distributions of pseudo-intragenomic and intergenomic CS-distances based on the
Spearman rank correlation. Part I presents distributions of pseudo-intragenomic distances
between an original fragment 4 and reshuffled fragment B. Part II presents distributions of
pseudo-intergenomic distances between reshuftled fragments B.
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T nucleotides hold their positions in sequence, substantially increases original CS-
distance between fragments. For example, real intragenomic distances lay in the
interval from 0 to 0.2 (Figure 3A), while pseudo intragenomic distances occupy the
whole range from 0.04 to 0.66 in case of GC reshuffling, and from 0.04 to 0.9 in case
of GC+AT reshuffling.

5. DISCUSSION

Compositional spectra - random set of words

Analyzing heterogeneity of DNA sequences is considered one of the main targets
of the current stage of genomic studies. The natural and simple approach proposed in
this study seems to be especially useful for examining intergenomic and intragenomic
relations. We found that relative frequencies of appearance of individual words taken
from an arbitrary set of words of a fixed length result in a species-specific pattern
(referred to as a “compositional spectrum”). The pattern obtained appeared to be
reproducible (among different samples from the same genome sequence) given a
sufficiently large set of words and a sufficiently large genomic DNA sample. The
proposed approach of genome characterization by the compositional spectra assumes
some reasonable choice of three parameters: length of words (L), number of words (n),
and allowed mismatch (r). From the biological point of view, the word length should
be in the range of 8 to 20 bases, typical for protein binding sites, and the number of
mismatches should correspond to about 20-30% of site length. The compositional
spectrum is actually a histogram of imperfect word occurrences. The majority of
histogram elements should have statistically significant values; otherwise, this
approach loses its power. The length L = 15 would not be a good choice, for example,
because it would require mismatch threshold » =8, as we experimentally found
examining genomic fragments of 500 Kb length. Our choice of the parameters (L = 10,
r=2) is a compromise between biological and statistical considerations (Reinert ef al.,
2000).

Compositional spectra - non-random set of words

In our work we studied the peculiarities of the compositional spectrum that is
based on the sets of random (to be more exact — evenly) distributed words. Therefore
the parameters of the spectra, in particular distances between spectra, should be
viewed as random quantities. For more details, see (Kirzhner et al., 2002). The same
work refers to the fact that different probabilistic models of word sets generation (e.g.
C+G rich words) provide a possibility to characterize correlations between sequences
in different ways. Here, we will give one of the possible models of the spectrum on a
non-random set of words, namely, the ones derived from a certain selected sequence.
Simultaneously, we will further justify our use of words of length between 10 and 15.

Similarity of, or differences between, sequences may already be estimated at the
level of letter frequencies. However, the question is: What is the correlation between
the sequence itself and the frequencies mentioned? The answer is obvious: there is a
tremendous number of sequences that are different in many ways. Yet they have the
same letter frequencies. This is why the “distance” between two sequences based on
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letter frequencies has a quite low “informational” quality. Such distances may
sometimes obey the natural logic: the fragments of one genome will (as a rule) be
sufficiently close to one another, while the genomes having very differing letter
frequencies will be far from one another.

A similar situation arises when we try to characterize a sequence by frequency of
words with lengths of 2, 3 or 4.

The situation is completely different for longer fragments. In particular, the
frequencies of a full set of words of length L = 10 - 15, to a great extent, determine the
sequence. Only in the case when the lengths of repetitions in the sequence exceeds the
word length L then unique reconstruction is impossible. Dyer ef al. (1994) determine
the asymptotic limiting probability as 72— oo that a random string of length m over
some alphabet ¢ can be determined uniquely by its substrings of length L. In our
case, 0 =4, m=300,000—-500,000 and the estimate of L is approximately 10 - 12.
Preparata et al. (1999) provide a simple algorithm which with high probability
reconstructs sequences of length O(4") (this is asymptotically optimal). If & = 10, than
the length of a sequence that may be reconstructed practically equals 4'° = 1,000,000
letters. In our work, we used the fragments of genomes of length of 300,000 - 500,000.

Thus, the frequencies of a full set of sufficiently long words do represent the
sequence well enough. Yet, how should these sets be compared to each other? How
may the distance between them be determined when the frequency of every single
word is very small. This task “evaluation of distance between two sets based on the
frequencies of the words” is well defined and may be fulfilled in more than one way.
One of the variants may be clusterization at the expense of identification of close (e.g.
according to Hemming’s metrics) words. After such a procedure, we obtain a pattern
that in our work is referred to as a compositional spectrum. The word length L does
not change, magnitude » equals Hemming’s distance (or is calculated in some other
way in the clusterization scheme). With such an approach, the set of words W is
chosen not randomly, but rather guided by the method of clusterization, being
“centers” of clusters.

Such a set W of words derived for one of genomes (fixed genome) provides the
possibility of analyzing the correlations with other genomes in relation to the fixed
genome.

Note that Sandberg et al. (2001) proposed another way of using the complete set of
words of length L for classifying genomes. It turned out that, in a certain statistical
procedure, this complete set of words of length L =9 from a short fragment of genome
(400 bp) can efficiently establish whether two different fragments belong to the same
genome, even if the test included closely related micro-organisms.

Compositional spectra - distances

Determination of the distance between spectra is the central point of the whole
approach proposed. A “good distance” must reflect an informal understanding of
spectra closeness. However, there are formal criteria of distance quality as well. Thus,
it is advisable that, as a rule, parts of one genome were close enough to each other, as
well as strains of one species. These requirements are natural. It is less obvious, but as
well important that the distance distribution on a great amount of heterogeneous
species is close to uniform and completely covers a possible range of distances.
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Necessity of this condition becomes clear if we imagine the opposite. Namely, let the
distance distribution be close to unimodal on a great amount of heterogeneous species.
This essentially means that the distance between any pair of species is the same and
equals the value of the mode and the distribution curve is described by dispersion
around this. This distance scarcely reflects the genuine correlations between genomes.
Euclidean distance (natural, if the set W is viewed as a vector) appeared to be one of
this type. Euclidean distance depends on the values of word frequencies in a sequence,
in other words, on the spectrum form. This characteristic has special peculiarities.
Suffice to mention that in the case of the linguistic nature of words the frequency
distribution of words obeys Zipf’s law. In the case of CS this law does not hold.
Nevertheless, the frequency parameter may bear a “latent” information being a “noise”
in respect to the spectrum characteristics necessary for distance determination. In a
certain sense, the closeness measure suggested in this work is the “minimum” one as it
depends only on violation of word order in the spectra of two comparable sequences
that are independently ordered. Its minimality lies in the fact that, as it seems, it is
impossible to use less data about spectrum if the distance calculation is based upon all
the words of the set W (and not on some kind of subsampling, for example). At the
same time, this measure is clear: if in an independent ranking of two spectra all the
words appear in the same places then the distance is zero. The more words in one
spectrum shift their places in respect to the other spectrum and the greater the
magnitude of shifts, the greater the distance.

Of course, other ways of distance determination that are not known to us by now
are possible as well. Probably, other distances will provide a more effective use of the
spectrum.

Prospects

Earlier, we had noted that for each sequence among those that were considered by
us the closest is, as a rule, another one of the same genome. However, almost all
considered genomes were monochromosomal. It is of interest to consider this result
for a polychromosomal genome. Denote by D,,;, the minimum intergenomic distance d
over all pairs of contigs for 100 different set W of words. The majority of pairs (87%)
of contigs from different human chromosomes have the distances d(h;,/;) less than
D,,i,. For the other 13% of pair distances d(h;,h;) > D,,,. But for every human
chromosome #; (h;) entering into such a pair there always exist a closer chromosome
h,‘s (hj,) for which d(hi,his) < Dmin and d(hj,hj,) < Dmin~

We believe that the proposed approach may be useful in addressing various
questions related to large-scale genome comparisons. For example, in our tests we
have revealed genome compositional heterogeneity of several species, including
Borrelia burgdorferi, which was found earlier using other methods (Mclnerney,
1998). Our CS-calculations also confirmed the recent findings that thermophillic
eubacteria Aquifex and Thermotoga are closer to Archaea than to Eubacteria (Nelson
et al., 1999).
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APPENDIX A. LIST OF DEPICTED GENOMIC SEQUENCES

Notation of fragments in all figures mentioned corresponds to indexes in the
Appendix. Every record in the list consists of the index, the name of the species, an
accession number for some fragments is mentioned to avoid a wrong identification,
and some data about a fragment in brackets. For a fragment of a complete genome we
specify a starting point and a length of the fragment, for a fragment having an
accession number we specify its length only. A real number with a value between 0
and 1 is related to the G+C content of the fragment. For example, the record "24 -
Mycobacterium tuberculosis (A: 1199341 (358717), 0.65; B: 2579341 (358913),
0.65)" means that M. tuberculosis has an index of 24; it is presented by two fragments,
A and B, from the complete genome, while the first segment starts at position 1199341
and has a length of 358717 bp, and the fragment B starts at position 2579341 and has a
length of 358913 bp; both fragments have 65% G+C composition.

Eukaryota:

1 - Homo sapiens chr. X (NT 011528) (539188 , 0.40); 2 - Homo sapiens chr. Y
(NT011864) (539595, 0.40); 3 - Homo sapiens chr. 1 (NT 004302) (539495, 0.36); 4 -
Homo sapiens chr. 3 (NT 002444) (543554, 0.46); 5 - Homo sapiens chr. 4 (NT
006051) (535847, 0.44); 6 - Homo sapiens chr. 6 (NT 007122) (599072, 0.43); 7 -
Homo sapiens chr. 7 (NT 007643) (447791 , 0.36); 8 - Homo sapiens chr. 11 (NT
008933) (506578 , 0.37); 9 - Homo sapiens chr. 12 (NT 009410) (532934 , 0.49); 10 -
Homo sapiens chr. 13 (NT 009796) (537882, 0.38); 11 - Homo sapiens chr. 20 (NT
011328) (540270 , 0.44); 12 - Homo sapiens chr. 22 (NT 001454) (701877 , 0.50); 13
- Mus musculus (A: chr7, AC012382, 276523, 0.44; B: chr.11, AL603707, 234182,
0.49); 14 - Caenorhabditis elegans (A: chrl, 1-438825, 0.36; B: chr2, 1-350000 ,
0.36); 15 - Drosophila melanogaster (A: chr.2 AE003641, 299556, 0.42; B: chr. X,
AE003506, 300000, 0.43); 16 - Arabidopsis thaliana (A: chr.1, NC 003071.1 100000-
531319, 0.36; B: chr.1, NC 003075.1, 400000-727859, 0.36); 17 - A thaliana
mitochondrial genome (A: NC 001284.1, 366923, 0.45); 18 - Saccharomyces
cerevisiae (A: chrii, 1-800000, 0.38; B: chrxv,1-800000, 0.39); 19 - Leishmania major
(A: AE001274, 1-171770, 0.62);

Eubacteria:

20 - Bacillus subtilis (A: 1199941 (579647) , 0.43; B: 2219941 (399002), 0.41);
21 - Streptococcus pyogenes (A: 239941 (690238) , 0.38; B: 1079941 (696345), 0.39);
22 - Mycoplasma genitalium (A: 1 (287593), 0.33; B: 278581 (288000), 0.30); 23 -
Mycoplasma pneumoniae (A: 239941 (199523) , 0.40; B: 539941 (199523), 0.40); 24 -
Mycobacterium tuberculosis (A: 1199341 (358717), 0.65; B: 2579341 (358913),
0.65); 25 - Synechocystis sp (A: 719941 (349960), 0.48; B: 2699941 (350000), 0.47);
26 - Helicobacter pylori (A: 599941 (320335), 0.39; B: 1439941 (320387), 0.39); 27 -
Escherichia coli (A:599941 (519942) , 0.51; B: 2999941 (542976) , 0.51); 28 -
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Deinococcus radiodurans (A: 599941 (399971), 0.67; B: 1799941 (399983) , 0.66);
29 - Thermotoga maritima (A:59941 (370054), 0.46; B:1259941 (366191), 0.46); 30 -
Aquifex aeolicus (A: 599941 (399976) , 0.43; B: 1199941 (400002) , 0.44); 31 -
Neisseria meningitidis (A: 599941 (361259), 0.51; B: 1199941 (373905), 0.52); 32 -
Campylobacter jejuni (A: 59341 (399984), 0.31; B: 1079341 (400002), 0.30); 33 -
Haemophilus influenzae (A: 119941 (399863), 0.38; B: 1139941 (399981), 0.38); 34 -
Chlamydia trachomatis (A: 59941 (399976), 0.41; B: 719941 (400002), 0.42); 35 -
Clostridium acetobutylicum (A: 315781 (347567), 0.32; B: 3000001 (340105), 0.31);
36 - Treponema pallidum (A: 59941 (275933), 0.52; B: 719941 (275984), 0.53); 37 -
Pseudomonas aeruginosa (A: 720001 (345206), 0.65; B: 1920001 (355163) , 0.67); 38
- Actinobacillus actinomycetemcomitans Strain HK1651 (A: 6000 (338681), 0.45; B:
800000 (344947), 0.45); 39 - Rickettsia prowazekii (A: 239941 (276000), 0.29;
B:719941 (276000), 0.29); 40 - Chlamydia pneumoniae (A:360001 (300017), 0.39; B:
840001 (300000), 0.41); 41 - Borrelia burgdorferi (A: (1) 399967, 0.29; B: 400000
(399979), 0.29);

Archaea:

42 - Halobacterium sp. Plasmida NC 001869 (A: 191652, 0.58); 43 — Pyrococcus
horikoshii (A: 240001 (399992), 0.42; B: 840001 (400002), 0.42); 44 - Pyrococcus
abyssi (A: 360000 (360000), 0.45; B: 1200001 (360000), 0.45); 45 - Archaeoglobus
fulgidus (A: 12061 (399986), 0.48; B: 1200061 (400002), 0.48); 46 - Methanococcus
Jjannaschii (A: 120001 (399868), 0.32; B: 840001 (399977), 0.31); 47 -
Methanobacterium thermoautotrophicum (A: 599941 (344374), 0.49; B: 1199941
(344455), 0.50); 48 - Aeropyrum pernix (A: 360061 (400002), 0.58; B: 960061
(400002), 0.57); 49 - Sulfolobus solfataricus AE006641 (A: 400001 (584947), 0.36;
B: 1220002 (308779), 0.36);

REFERENCES

Brendel, V., J.S. Beckmann and E.N. Trifonov (1986). Linguistics of nucleotide sequences:
morphology and comparison of vocabularies. Journal of Biomolecular Structure and
Dynamics 4: 11-21.

Dyer, M., A. Frieze and S. Suen (1994). The probability of unique solutions of sequencing by
hybridization. Journal of Computational Biology 1: 105-110.

Karlin, S. (1998). Global dinucleotide signatures and analysis of genomic heterogeneity. Current
Opinion in Microbiology 1: 598-610.

Karlin, S. and J. Mrazek (1997). Compositional differences within and between eukaryotic
genomes. Proceedings of the National Academy of Sciences of the United States of America
94:10227-10232.

Karlin, S. and C. Burge (1995). Dinucleotide relative abundance extremes: a genomic signature.
Trends in Genetics 11: 283-290.

Kendall, M. G. (1970). Rank Correlation Methods. Charles Griffin & Co., Ltd, London.

Kendall, M. G. and A. Stuart (1967). Inference and Relationship, 2. Charles Griffin & Co., Ltd,
London.

Kirzhner, V.M., A.B. Korol, A. Bolshoy and E. Nevo (2000). Extensive Sets of Words Reveal
Large-Scale Genome Organization. Poster in Genomes 2000: International Conference on
Microbial and Model Genomes, Paris, France.



A LARGE-SCALE COMPARISON OF GENOMIC SEQUENCES 89

Kirzhner, V.M., A.B. Korol, A. Bolshoy and E. Nevo (2002). Compositional spectrum -
revealing patterns for genomic sequence characterization and comparison. Physica A 312:
447- 457.

Mclnerney, J. O. (1998). Replicational and transcriptional selection on codon usage in Borrelia
burgdorferi. Proceedings of the National Academy of Sciences of the United States of
America 95: 10698-10703.

Nelson, K. E. R. A. Clayton, S. R. Gill, M. L. Gwinn, R. J. Dodson, D. H. Haft, E. K. Hickey,
J. D. Peterson, W. C. Nelson, K. A. Ketchum, L. Mcdonald, T. R. Utterback, J. A. Malek,
K. D. Linher, M. M. Garrett, A. M. Stewart, M. D. Cotton, M. S. Pratt, C. A. Phillips,
D. Richardson, J. Heidelberg, G. G. Sutton, R. D. Fleischmann, J. A. Eisen, O. White,
S. L. Salzberg, H. O. Smith, J. C. Venter and C. M. Fraser (1999). Evidence for lateral gene
transfer between Archaea and bacteria from genome sequence of Thermotoga maritima.
Nature 399: 323-329.

Pevzner, P., M. Borodovsky and A. Mironov (1989). Linguistics of nucleotide sequences. I: The
significance of deviations from mean statistical characteristics and prediction of the
frequencies of occurrence of words. Journal of Biomolecular Structure and Dynamics 6:
1013-1026.

Pietrokovski, S. (1994). Comparing nucleotide and protein sequences by linguistic methods.
Journal of Biotechnology 35: 257-272.

Pietrokovski, S., J. Hirshonn and E. N. Trifonov (1990). Linguistic Measure of Taxonomic and
Functional Relatedness of Nucleotide Sequences. Journal of Biomolecular Structure and
Dynamics 7: 1251-1268.

Preparata, F., A. Frieze and E. Upfal (1999). Optimal reconstruction of a sequence from its
probes. Journal of Computational Biology 6: 361-368.

Reinert, G., S. Schbath and M. S. Waterman (2000). Probabilistic and statistical properties of
words: an overview. Journal of Computational Biology 7: 1-46.

Sandberg, R., G. Winberg, C-I. Branden, A. Kaske, 1. Ernberg and J. Coster (2001). Capturing
Whole-Genome Characteristics in Short Sequences Using a Naive Bayesian Classifier.
Genome Research 11: 1404-1409.





