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Abstract

This paper is devoted to the techniques of clustering of texts based on the comparison of vocabularies ofN-grams. In
contrast to the regularN-grams approach, the proposedN-grams method is based on calculation of imperfect occurrences
of N-grams in a text up to a number of mismatched strings. We demonstrated that such an approach essentially improves
the resolving capacity of theN-grams method for DNA texts. Additionally, we discuss a mutual usage scheme of different
clustering technique types to verify the partition quality.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Clustering problems arise in various areas of text mining
and information retrieval. Typically, given a language each
document is reduced to representation by a vector of fre-
quencies of terms selected in an appropriate way. The next
step relates to finding a suitable distance between the vec-
tors, such as Euclidian, Manhattan, Covariance distances,
etc. (e.g. Refs.[1,2]), which could provide a reasonable di-
vision. Finally, a clustering based on the chosen distance
is performed by means of one of the partitioning methods,
e.g. resembling thek-means method[3] or k-medoids pro-
cedures[4].

1.1. N -grams technique

Probably, Shannon[5] in 1948 was the first to employ
N-grams for characterizing texts (he also proposed the
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termN-gram). He was speaking about a “discrete source as
generating the message, symbol by symbol”[5]. By Shan-
non, this could be a message written in a natural language,
continuous information sources that have been rendered dis-
crete (for example, speech) and, more generally, an abstract
stochastic process which generates a sequence of symbols.
In particular, Shannon’sN-grams were defined as formal
words (i.e. not related to their real values). Informally speak-
ing, if an object can be represented by a sequence over the
taken alphabet A, then one way of performing a feature ex-
traction is to describe it in terms of its subsequences. AnN-
gram is a subsequence of lengthN. Despite its initial narrow
usage in the theory of communication,N-grams were later
applied more widely including such fields as classification
of different “texts” like messages in natural and artificial
languages, music, images, etc.

Depending on the application field, this approach may
useN-grams of different length—for example, from 2 to 100
letters. The effect ofN-grams lengths is discussed in detail
in the literature. For instance, the Stores system[6] suggests
the value ofN = 3 because it yields the best selectivity in
the search access rate. Other systems have used trigrams in
order to conserve memory or disk accesses[7]. Cavnar[8]
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employed bigrams and trigrams together in the same sys-
tem assuming that bigrams provide better matching for in-
dividual words while trigrams provide the connections be-
tween words to improve phrase matching, thus complement-
ing each other. Cohen[9] and Damashek[10] used 5-grams,
while Robertson and Willett[11] used bigrams and trigrams,
with no reasons provided for these choices. It is also possi-
ble to use initiallyk-grams and then move to(k − 1)-grams
to improve the results. Thus, Huffman and Damashek[12]
and Huffman[13] reached about 20% improvement of gar-
bled text. For Korean text retrieval, bigrams applied in com-
bination withN-grams provided the best 11-point average
precision[14].

In general, a comparison of linear symbolic sequences
based on theN-grams technique proved to be effective re-
gardless of the origin of the sequence processed including
imaging, voice processing, and music. Any such “text” is re-
duced to a vocabulary of the frequencies ofN-grams along
the whole sequence or its pieces. Proximity between such
vocabularies can then be used for text comparisons.

In this paper, we apply theN-grams technique for classi-
fying DNA sequences considered as text over the four-letter
alphabetU={A, C, G, T}. One can consider formal words
of varying lengthsL: word means a string of lengthL over
the alphabetU. Clearly, these words are exactly Shannon’s
N-grams. However, in order to retain the standard terminol-
ogy evolved in the field of bioinformatics, we continue to
use the term “word” for discussing concrete biological sit-
uations andN-grams in general contexts.

1.2. Clustering technique

Generally speaking, most of the existing clustering meth-
ods can be categorized into three groups: partitioning, hier-
archical, and density-based approaches. We apply here parti-
tioning and hierarchical methods only. Partitioning methods
have the advantage of being able to incorporate knowledge
about the size of the clusters by using certain templates and
the elements’ dissimilarity in the objective function. Such an
algorithm is guaranteed to produce clustering for any data
although there is currently no generally accepted way to test
the null hypothesis of no clustering (e.g. that the data are
distributed uniformly).

In addition, the known hierarchical clustering proce-
dures yield a nested sequence of partitions and, as a rule,
avoid specifying how many clusters are appropriate. This is
achieved by providing a partition from cutting the tree (den-
drogram) at some level. Inner statistical tests (see general
overview in Ref.[15]) could hardly serve a guide on where
to cut the dendrogram. On the other hand, partitioning meth-
ods may produce a tighter cluster structure than hierarchical
ones and are computationally faster with a larger number
of variables in the case of a small number of clusters. Such
methods do not usually do well with non-globular clusters,
and the difference between various partitioning methods
lies in the strategies of making a compromise to find

suboptimal solutions. In fact, different methods could yield
diverse results. Even with a specific method, the solutions
are usually sensitive to initial conditions. Both clustering
types may also be used together[16].

1.3. Methods of comparison of DNA texts based on
N -grams

It is important to realize that the four chemical bases of
DNA are exactly the same in all living organisms. Each
DNA fragment may be sequenced and its sequence will au-
thentically and adequately represent it. We apply the ap-
proach based on theN-grams technique to cluster DNA se-
quences representing complete genomes. The genome is the
total genetic constitution of an organism. Excluding those
of viruses, genomes consist of one or more double-stranded
molecules of DNA. Certainly DNA fragments, short or long,
are molecules (biopolymers) but from an information point
of view these molecules may be fully characterized by their
sequences and DNA sequences are linear texts over the four
letter alphabet: {A, T, G, C}. A complete genome of a rel-
atively simple organism is a pretty long text, hundreds of
thousands for the smallest; usually millions of letters. Hered-
itary fragments of a genome are called genes. The vast ma-
jority of genes code for messenger RNAs (mRNAs) that are
translated into proteins, with the collection of all protein-
coding genes within a genome referred to as the proteome.
Some methods of genome classification are based on reduc-
tion of a whole genome to its proteome exclusively. The
genome also contains a small set of genes coding for struc-
tural RNAs. In both prokaryotes and eukaryotes, such RNAs
play critical roles in many functions. Collectively, all the
protein-coding and structural RNA-coding genes constitute
the genic DNA of a genome. For prokaryotes, this is the bulk
of the entire genome. In eukaryotes, genic DNA comprises
only a fraction (and in some cases a very small fraction) of
the total genome.There are methods of genome taxonomy
based on comparison of chosen genic elements, protein cod-
ing or RNA-coding. However, there are also methods of se-
quence comparisons unrelated to genomic functional struc-
ture. Frequently such methods are called linguistic because
they use variousN-grams-based techniques.

In one of the recent reviews[17], a few methods of
DNA sequence analysis based on counting textualN-grams
were presented. As we mentioned above, the most accepted
approach to genome comparison is to calculate similar-
ity among one or more pairs of homologous genes of the
genomes. This is the strategy of choice in molecular evo-
lution studies. The methods based on counting word occur-
rences cannot replace the methods based on investigation
of homologies. Nevertheless, they serve as a supporting ap-
proach in comparative genomics and molecular evolution.
One form of statistical summarization is based on analyzing
frequencies of oligonucleotides (DNAN-grams). For exam-
ple, consideringN equal to four, there are 256 different 4-
grams (256 tetranucleotides over the DNA alphabet). One
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can treat the set of tetranucleotide frequencies as a statisti-
cal summary of the given DNA sequence. By using the fre-
quency distributions of tetranucleotides, one can carry out a
comparison between a pair of DNA sequences. It was shown
many times that this method could reveal certain biologi-
cally significant features in a DNA sequence (see, for exam-
ple, Refs.[18–20]). This methodology assumes thatN (the
fixed given size of theN-words) is relatively small allow-
ing for computationally reasonable and statistically justified
sequence comparisons.

There are biologically motivated improvements of such
a methodology. One direction of development lies in a se-
rious increase of word length. Kirzhner et al.[21,22] pro-
posed a novel natural approach to characterize genomic se-
quences. According to this approach, a genomic sequence
is reduced to a histogram of imperfect occurrences ofN-
grams. High flexibility characterizes this approach due to
an allowance for imperfect matching, so that relatively long
words comprising the compositional spectra can be consid-
ered. The similarity of spectra obtained on different stretches
of the same genome, and, simultaneously, a broad range of
dissimilarities between spectral representations of different
genomes, justify the usefulness of compositional spectra as
an informative genome characteristic.

We analyzed different values ofN and possible dimen-
sions ofN-grams vectors. It appeared that in the case of
a DNA text, a set of 200N-grams withN = 10 may be
sufficient to successful clustering of DNA sequences. As it
was mentioned above the issue of the number ofN-grams
(i.e. dimension of a corresponding vector) appears to be
very widespread. Usually, the suggestion is to include all
N-grams. Their potential number grows exponentially, yet
the real number, evidently, is confined by the length of a
specific text. It is also important to mention that in contrast
to usualN-gram techniques, we have determined the occur-
rence of a givenN-gram in a text with certain inaccuracy
[21]. Indeed, small local “mismatching” in a genetic text is
usually considered routine in biological systems, as opposed
to linguistic texts, when the number of such mistakes should
be very limited. In addition, by the allowance of a certain
level of mismatching, we obtain better frequency statistics:
instead of tens of occurrences of eachN-gram we can get
hundreds and thousands.

In this paper, we analyze possible distances in the space of
N-gram frequencies from the viewpoint of clustering DNA
texts. Two clustering approaches are employed. The first
one, WPGMA, is agglomerative whereas the second one,
Partition Around Medoids (PAM or thek-medoids), is a par-
tition algorithm. The obtained results are compared keeping
in mind biological interpretations.

The article is arranged in the following way. In Section
2 we describe, based on our previous work[21,22], theN-
grams method as applied to DNA texts. In Section 3, we
compare characteristics of several distances from the view-
point of clustering genomes (DNA sequences). In Section
4, we describe clustering methods and results, which are

discussed in Section 5 on the basis of formal and biologi-
cally meaningful criteria. The list of species and the clus-
tering results are given inTable 3in the appendix.

2. Dictionary of N -grams for DNA text

2.1. Calculating compositional spectrum (CS)

In accordance with our previous definitions[21] as a per-
fect occurrence in a target sequenceS meansx is a substring
of string S. Word y is an imperfect occurrence ofx in S

meansy is a substring ofS, and distance (in a given met-
ric space) betweenx andy is less than a threshold (in the
given metrics). Wordx is an imperfect occurrence ofwi in
S if Hamming distance between wordwi and wordx less
than givenr. This approximate matching can be denoted as
“r-mismatching”.

Let us consider a setW (dictionary) ofn different words
(oligonucleotides in biochemical terminology)wi of length
L, n>4L, where 4L are the total number of maximally pos-
sible different words of lengthL. The quantityn is assumed
relatively small. Bymi we denote the number of imperfect
occurrences of wordwi of the setW in a target sequence
S : mi = occ(wi |S). Now let M = �mi . The vector of fre-
quency distributionF(W, S) of fi =mi/M will be referred
to as a compositional spectrum of the sequence S relative to
the setW .

2.2. N -grams selection and dictionary composition

The pre-selected setW ofN-grams effectively distinguish-
ing the texts may (a) not be attached to the texts beforehand,
(b) not be unique, and (c) be relatively small. In particular,

(a) For any given parametersL and n we consider a set
W as a random sample from the set of all possibleN-
grams with a sampling procedure that can be represented
as a stochastic procedure of word generation. Let the
words be produced by sequentially adding new letters
(out of the four-letter alphabet) with equal probability of
appearance of each letter at the new currently generated
position. We call such stochastic procedure uniformly
random and any resulted random set W of words will
also be referred to as a uniformly random set. Thus, we
select a setW independently of the current base of the
texts.

(b) Every uniformly random set defined in (a) may be used
as anN-gram dictionary. Theoretically, different dictio-
naries may result in a different correlation between text
distances. However, the remarkable fact is that this is
not the case for DNA texts[21]. In particular, a very
high correlation is characteristic for sequences taken ran-
domly from the same genomes.

(c) Concerning the size of the dictionaryW and a fixed
length of a word in the dictionary, the following
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considerations based on our previous massive compar-
isons may be helpful[21]. Remarkably, selection of ap-
propriate dictionary parameters depends on a text size.
As a first step of reduction, we randomly chose a contin-
uous genome fragment of the size|S|=500, 000 bp. Ex-
cept a few small parasites, all organisms have genomes
larger than 1 Mbp, so a random extraction of such a
fragment is possible leaving the rest of a genome for the
verification of results. A next step is to choose a sizeN

for a N-gram dictionary. There are a few different con-
siderations in a choice of this parameter. From the bio-
logical point of view, the length should be in the range
of 8–20 bases, typical for protein binding sites. A next
parameter, a number of mismatches should correspond
to about 20–30% of a site length. Alternatively, it is
possible to get a theoretical estimate of a character word
length. For this purpose we would use the theory used
in DNA sequencing and technology, which was named
sequencing by hybridization (SBH). According to this
approach the whole sequence of the lengthN is recon-
structed from a complete set of its subsequences of the
predefined length (N-grams). This theory also considers
a possibly ambiguous reconstruction resulting in a few
variants of a whole sequence, so the theory provides “the
probability of unique reconstruction”. Theoretical esti-
mations for the chosen length of the text (500,000 bp)
give the following values: sizeL from 10 (words as
patterns with gaps of un-sampled positions—imperfect
matching with a number of mismatches close to 20% of
theL value), up to 20 letters (perfect matching)[23–25].

It is obvious, that a problem of reconstruction, especially
partial, is similar to a problem of classification. Thus, bas-
ing both on empirical and theoretical considerations we took
sets of words of a fixed length from 10 up to 20. In a text of
500,000 letters a word of the length 10 has in average about
10 perfect occurrences. Allowing two mismatches numbers
of imperfect occurrences of words of length 10 vary in sig-
nificant range—from hundreds up to thousand. It creates
stretched enough scale. At significant increase in length of
a word, sayL = 15, allows the number of mismatchesr to
grow from 7 to 8 if we consider the same number of words
(for e.g. 8) in sequences of the same length, i.e. the number
of identical letters remains constant—about 8. Therefore we
chose parametersL = 10, r = 2 though, it seems that, some
variation of these parameters is insignificant for the further
considerations.

The sizen of the dictionary was established empirically
minding a problem of further clustering. For this procedure
we took a set of approximately 50 genomes. In one cycle
of the procedure for the fixed dictionary of the sizen, all
pairwise distances between any pair of those genomes were
calculated. Repeating this step for 100 dictionaries of the
lengthn we obtained an average dispersion as a function of
n. The saturation happened aroundn = 200. Thus, in this
study we deal withCS for parametersL=10, n=200, r=2.

Testing of various dictionaries with such parameters
showed, thatCS various parts of genomes of the size of
500,00 bp appeared to be practically identical.

2.3. Material

The described approach was applied to the analysis of
cluster structures in a set of genomes including DNA se-
quences of 37 species of Eukaryota, Eubacteria, and Archaea
(see Appendix,Table 3, column A).

3. Distances in the compositional spectra space

By definition, a compositional spectrum of the sequence
S relative to the setW is a vector of frequenciesF(W, S).
There are various methods to measure dissimilarity be-
tween two distribution-vectorst = (t1, t2, . . . , tn) and
u = (u1,u2, . . . ,un). In this paper we compare several
possible distances.

It is associated with one of the famous problems of the
Cluster Analysis concerning the identification of the opti-
mum number of clusters. As the synthesis process contin-
ues, increasingly dissimilar clusters must be fused, i.e. the
classification becomes increasingly artificial. Usage of the
histogram of distances appears to be the most appropriate
way to handle this problem (see Refs.[26,27]). Namely, lo-
cal minima of the histogram of all pairwise distances make
a cluster structure of the data such that the masses of all lo-
cal peaks indicate the density of the clusters’ concentration.
(A number of local minima could provide a lower bound for
the number of possible clusters.) Note that this methodol-
ogy makes it possible to assess the discriminating capabil-
ities of a distance measure without running any clustering
procedure. For example, detection of two essential local his-
togram minimum points leads to an assumption that there
are at least three clusters.

We examined the next distances:
1. The Euclidian distance that is defined for two distribu-

tions
t = (t1, t2, . . . , tn) andu= (u1,u2, . . . ,un) by the con-

ventional way as

d1(t,u) =
n∑

i=1

(ti − ui )
2.

2. The Manhattan distance

d2(t,u) =
n∑

i=1

abs(ti − ui ).

3. The Max-distance

d3(t,u) = max
i

abs(ti − ui ).
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4. KS-like distance, in the case when the coordinates of
the vectorst andu can be interpreted as frequencies

d4(t,u) = max
i

|Fi − Ui |,

where

Fi =
∑i

j=1tj∑n
j=1tj

, Ui =
∑i

j=1uj∑n
j=1uj

are the relative cumulative distributions. This distance is as-
sociated with the well-known Kolmogorov–Smirnov statis-
tics.

5. The correlation dissimilarity

d5(t,u) = (1 − R(t,u))/2,

whereR(t,u) is the Pearson correlation coefficient.
6. The Spearman dissimilarity

d6(t,u) = (1 − �(t,u))/2,

where�(t,u) is the Spearman rank correlation coefficient.
7. The Kendall dissimilarity

d7(t,u) = (1 − �(t,u))/2,

where�(t,u) is the Kendall rank correlation coefficient.
We investigated all distances according to their potential

ability to produce a “meaningful” partition using the same
set of 37 chosen species (Appendix). We have also taken
two sequences 300–400 kb long from each genome, exclud-
ing the Human genome (where 11 sequences were taken).
Thus, the initial set (database) included 85 sequences. Such
a structure of the database (more than one sequence from
every genome) will allow a natural control of the grouping
quality in data. Then, the compositional spectrum (N-gram
vector) had been calculated for every sequence as described
in Section 2.

According to the obtained results, we divided all distance
measures into two groups. The first group included: Eu-
clidian, Manhattan, Max, andKS-like distances. The second
group contained the dissimilarities based on correlation: Per-
son, Spearman, and Kendall. A typical example of the dis-
tance histogram in the first group is given by the Euclidian
distance (Fig. 1).

This histogram points to a possibility of two or three clus-
ters being very different in their sizes. However, generally
speaking, it looks like one big cluster. This fact could be in-
directly demonstrated by an attempt to group the data into
two clusters using theK-means algorithm. The final parti-
tion becomes unstable from the point of view of the Mul-
tivariate MANOVA procedure. It is very hard to expect a
reasonable clustering to be obtained by means of such in-
appropriate measure.

An example of a histogram for the second group is pro-
vided in Fig. 2, using the distance based on Kendall rank
correlation coefficient.
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Fig. 1. Histogram of the Euclidian distance.
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Fig. 2. Fig. 2. Histogram of the Kendall distance.

One can recognize here some three local minima of the
histogram, but disparities between masses of the local max-
imum areas are not so considerable compared to the previ-
ous group of distances (seeFig. 1). This fact allows us to
assume three or more clusters in the data.

We can observe three major local minima of the his-
togram, but disparities between the masses of areas corre-
sponding to the local maxima are not so considerable com-
paring those in the previous group of distances. Therefore,
we can assume that there are three or more clusters in the
data. Consequently, the second group seems to be prefer-
able for the effectiveness of the subsequent clustering. The
second group also includes a measure based on theN-grams
vector correlation that is often used for building distance ma-
trices. However, we used the distance based on the Kendall
coefficient that seems to give the best estimation of the clus-
ter structure.
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4. Clustering data

Using the distance based on the Kendall coefficient we
apply two clustering methods corresponding to two different
clustering techniques—hierarchical and partitioning.

4.1. Weighted pair group method with arithmetic mean
(WPGMA)

The WPGMA is the simplest method of tree construc-
tion [28]. It was originally developed for constructing taxo-
nomic phenograms, i.e. trees that reflect the similarities be-
tween elements of finite sets. In evolutionary studies these
elements are usually referred to as operational taxonomic
units (OTUs). In order to get an idea about cluster stabil-
ity, we complement the WPGMA method by the following
procedure that will be clarified through the treatment of our
major data set on 37 species.

The procedure is as the follows. As it was noted in the
previous paragraph the number of clusters in the consid-
ered species collection appears to be not less than three. We
used the WPGMA method to divide the set into three clus-
ters and considered the validation of each cluster by means
of the following approach. First of all, we mark the clus-
ter elements and repeatN times the hierarchical WPGMA
procedure based on various distance matrixes (whereN is
a pre-selected number). These matrices are built on some
randomly chosen dictionaries and corresponding composi-
tional spectra. The clusterization procedure is stopped if at
least 75% of the marked items are concentrated in a one of
the formed clusters. Reiteration of the described procedure
for another distances template can lead, generally speak-
ing, to another cluster. As a result, each data set element
gains an array of the relative frequencies of the member-
ship. Thus, a data set together with an attached occurrence
table is calledU-cluster; i.e. each element is presented by
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Fig. 3. Fig. 3. A cluster construction example by means the WPGMA method.

its estimated membership probability. A cluster is consid-
ered “stable” if the majority of the marked elements possess
significantly higher probability values in theU-cluster than
the non-marked ones do.

We conducted this test 100 times with 100 different (but
uniformly distributed) dictionaries (accordingly, using the
produced distance matrixes) with the same parametersL =
10, n = 200, andr = 2. Then, we calculated the percentage
of occurrences of every element (OUT) in this or that cluster
within all 100 tests. For example, the result obtained for the
first cluster is reproduced inFig. 3.

Averaging-out was done with 100 runs using 100 dif-
ferent setsW . X-axis represents all 11 sampled human
genome sequences (Homo sapienschromosomesX, Y and
1,3,4,6,7,11,13,20,22) and (for simplicity) one of the two
sequences per genome for all remainder species (if both se-
quences for each genome were represented they would ap-
pear as adjacent neighbors). The vertical axis shows the per-
centages of occurrences of each species in the given cluster.
The species identified as the cluster members are marked
by squares on the lower curve. We see that this cluster has
a kernel appearing in no less than 75% of the cases and
random components appearing in not more than 20% of the
cases. This kernel can be considered as a cluster.

Similar calculations were done for the other two clusters,
the result being represented inTable 3, column 2. We refer
to the obtained clustering asU-clustering.

4.2. Partitioning around medoids

The partitioning around medoids (PAM) method was
introduced by Kaufman and Rousseeuw[4]. The PAM pro-
cedure gets as its arguments a dissimilarity matrix of the
elements and suggests the number of clustersk. The routine
is built on searching fork representative objects, or medoids,
around the points to be clustered. The clusters are created
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Table 1
Different correlation coefficients ofU - andP -partitions

3 4 5 6 7 8 9

Cramer’s_V 0.6165 0.8138 0.8891 0.9537 0.9825 0.9825 0.9825
Rand 0.679 0.8364 0.8654 0.899 0.9127 0.9099 0.9055
Jain & Dubes 0.4511 0.589 0.625 0.6858 0.7146 0.7049 0.6925
Fowlkes & Mallows 0.6351 0.7403 0.7745 0.8325 0.8613 0.8563 0.8474

Table 2
Two-way joint distribution of 3 clusters ofU -partition andP7-partition

Clusters 1 2 3 4 5 6 7

1 0 0 0 11 6 8 0
2 34 0 0 0 0 0 2
3 0 14 8 0 0 0 2

by passing on each element to the most similar medoid.
The algorithm seeks for an optimal value of the sum of the
dissimilarities of the observations to their closest medoid.
A minimum partition for the objective function is a final
medoids-set, such that no single movement of an observation
relative to the medoids can decrease the objective function
value. The PAM approach looks more robust and efficient
than the knownk-means algorithm and is implemented in
clustering packagesR andS-Plus.

4.3. Verifying the results of clustering

When using the hierarchical method, we rested upon an
estimate of a number of clusters obtained in Section 3. Ac-
cording to this estimate, the number of clusters when us-
ing the Kendall coefficient for compositional spectra of 37
species is expected to be no less than three. However, the
actual number of clusters may be greater. Disagreement be-
tween the amounts of clusters determined by different pro-
cedures may derive from the fusion of several smaller clus-
ters into one big cluster.

The results of clustering with PAM method (P -clusters)
substantially depend on the chosen number of clusters.
Therefore, we decided to use the PAM method for calcu-
lation of the cluster structure starting from three as the
minimum number of clusters. The intention is to get a “cor-
rect fragmentation” of the 3-cluster structure found earlier
with the hierarchical method. Namely, we refer here to such
a fragmentation, with PAM method, when everyP -cluster
of this fragmentation intersects only oneU -cluster. We call
such a kind of mutual cluster structure as a coordinated
structure. We believe that such a coordinated structure
makes possible the restoration of genuine clustering. Note
that the coordinated structure always exists, for example,
in the trivial situation when the number ofP -clusters is
equal to the number of elements. If this case is the only

example of a coordinated structure, then clustering frag-
mentation must be considered inadequate. However, even
if a non-trivial coordinated structure is achieved, cluster
fragmentation might be close to the trivial one, e.g. with
the number ofP -clusters close to the total number of
elements.

In order to characterize the quality of the coordinated
structure, we employed several correlation coefficients.
Keeping in mind reaching a coordinated structure with a
minimal number ofP-clusters, we subsequently calculate
the partitionsP3, P4, . . . , etc. until the achievement of a
coordinated cluster structure. It is interesting to note that
coordination is not a “heritable” feature. In particular, if the
PAM cluster structure with some given number of clusters
T is coordinated with a given hierarchical structure, then it
is not necessary that for a value greater thanT the structure
will also be coordinated.

5. Results

5.1. Coordinated cluster structure

As it was mentioned above, clustering aims at extracting
inner structure in a data. A fundamental question referred
to as the problem of cluster validation, i.e. the problem
of judgment the “correct” number of clusters. In general,
clustering algorithms make different assumptions about the
set structure. Since for the cases of interest one does not
know whether these assumptions are satisfied by the data,
different clustering methods lead to a variety of answers. For
that reason a universal method of finding the true number of
clusters for given data does not exist. However, in the spirit
of Roth et al.[29], we can consider the notion of cluster
stability as a criterion for this purpose. In our case, this
concept suggests good matching between PAM partitions
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Table 3
Summary table of the used species and theirU - andP -partitions

A B 3 4 5 6 7 8 9

Operational taxonomic units U -structure PAM PAM PAM PAM PAM PAM PAM

Homo sapienschr. X 1 0 3 3 3 3 3 3
Homo sapienschr. Y 1 0 3 3 3 3 3 3
Homo sapienschr. 1 1 0 3 3 3 3 3 3
Homo sapienschr. 3 1 0 3 3 3 3 3 3
Homo sapienschr. 4 1 0 3 3 3 3 3 3
Homo sapienschr. 6 1 0 3 3 3 3 3 3
Homo sapienschr. 7 1 0 3 3 3 3 3 3
Homo sapienschr. 11 1 0 3 3 3 3 3 3
Homo sapienschr. 13 1 0 3 3 3 3 3 3
Homo sapienschr. 20 1 0 3 3 3 3 3 3
Homo sapienschr. 22 1 0 3 3 3 3 3 3
Pyrococcus hor 1 0 0 0 5 5 5 5
Pyroccocus hor 1 0 0 0 5 5 5 5
Methanobacterium thermoautotroph 1 0 3 4 4 4 4 8
Methanobacterium thermoautotroph 1 1 3 4 4 4 4 8
Archaeoglobus fungulus 1 0 3 4 4 4 4 4
Archaeoglobus fungulus 1 2 2 4 4 4 4 4
Aquifex aeolicus 1 0 0 4 5 5 5 5
Aquifex aeolicus 1 0 0 4 5 5 5 5
A. thalianamitochondrial genome 1 0 3 3 5 5 5 5
A. thalianamitochondrial genome 1 0 3 3 5 5 5 5
Thermotoga maritima 1 0 0 4 4 4 4 4
Thermotoga maritima 1 0 0 4 4 4 4 4
Pyrococcus abyssi 1 0 0 0 5 5 5 5
Pyrococcus abyssi 1 0 0 0 5 5 5 5
Caenorhabditis elegans 2 0 0 0 0 0 0 0
Caenorhabditis elegans 2 0 0 0 0 0 0 0
Synechocystissp. 2 2 2 2 2 6 6 6
Synechocystissp. 2 2 2 2 2 6 6 6
Saccharomyces cerevisiae 2 0 0 0 0 0 0 0
Saccharomyces cerevisiae 2 0 0 0 0 0 0 0
Arabidopsis thaliana 2 0 0 0 0 0 0 0
Arabidopsis thaliana 2 0 0 0 0 0 0 0
Drosophila melanogaster 2 0 0 0 0 0 0 0
Drosophila melanogaster 2 0 0 0 0 0 0 0
Methanococcus jan 2 0 0 0 0 0 0 0
Methanococcus jan 2 0 0 0 0 0 0 0
Streptococcus pyogenes 2 0 0 0 0 0 0 0
Streptococcus pyogenes 2 0 0 0 0 0 0 0
Borrelia burgdorferi 2 0 0 0 0 0 0 0
Borrelia burgdorferi 2 0 0 0 0 0 0 0
Bacillus subtilis 2 0 0 0 0 0 0 0
Bacillus subtilis 2 0 0 0 0 0 0 0
Helicobacter pylori 2 0 0 0 0 0 0 0
Helicobacter pylori 2 0 0 0 0 0 0 0
Mycoplasma genitalium 2 0 0 0 0 0 0 0
Mycoplasma genitalium 2 0 0 0 0 0 0 0
Enterococcus faecalis 2 0 0 0 0 0 0 0
Enterococcus faecalis 2 0 0 0 0 0 0 0
Mycoplasma pneumoniae 2 0 0 0 0 0 0 0
Mycoplasma pneumoniae 2 0 0 0 0 0 0 0
Campylobacter jejuni 2 0 0 0 0 0 0 0
Campylobacter jejuni 2 0 0 0 0 0 0 0
Haemophilus influenzae 2 0 0 0 0 0 0 0
Haemophilus influenzae 2 0 0 0 0 0 0 0
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Table 3 (continued)

A B 3 4 5 6 7 8 9

Operational taxonomic units U -structure PAM PAM PAM PAM PAM PAM PAM

Sulfolobs solfat 2 0 0 0 0 0 0 0
Sulfolobs solfat 2 0 0 0 0 0 0 0
Clostridium acetobutylicum 2 0 0 0 0 0 0 0
Clostridium acetobutylicum 2 0 0 0 0 0 0 0
Rickettsia prowazekii 2 0 0 0 0 0 0 0
Rickettsia prowazekii 2 0 0 0 0 0 0 0
Escherichia coli 3 2 2 2 2 2 2 2
Escherichia coli 3 2 2 2 2 2 2 2
Treponema pallidum 3 2 2 2 2 2 7 7
Treponema pallidum 3 2 2 2 2 2 7 7
Thermus thermophilus 3 1 1 1 1 1 1 1
Thermus thermophilus 3 1 1 1 1 1 1 1
Mycobacterium tuberculosis 3 1 1 1 1 1 1 1
Mycobacterium tuberculosis 3 1 1 1 1 1 1 1
Neisseria meningitides 3 2 2 2 2 2 2 2
Neisseria meningitides 3 2 2 2 2 2 2 2
Neisseria gonorrhoeae 3 2 2 2 2 2 2 2
Neisseria gonorrhoeae 3 2 2 2 2 2 2 2
Leishmania major 3 1 1 1 1 1 1 1
Leishmania major 3 1 1 1 1 1 1 1
halobacterium SRc-1 3 1 1 1 1 1 1 1
halobacterium SRc-1 3 1 1 1 1 1 1 1
Deinococcus radiodurans 3 1 1 1 1 1 1 1
Deinococcus radiodurans 3 1 1 1 1 1 1 1
Pseudomonas aeruginosa 3 1 1 1 1 1 1 1
Pseudomonas aeruginosa 3 1 1 1 1 1 1 1
Actinobacillus actinomycetemcomitans 3 0 0 0 0 6 6 6
Actinobacillus actinomycetemcomitans 3 2 2 2 2 6 6 6
Aeropyrum pernix 3 1 1 1 1 1 1 1
Aeropyrum pernix 3 1 1 1 1 1 1 1

A—list of species; B—U -partitions (different clusters are marked by different numbers); (3–9)—P -partitions with corresponding numbers
of clusters.

and U -structure. Moreover, we are interested to reach a
partition having suitable biological interpretation.

Let us compare PAM-structuresP3–P9 (see appendix,
Table 3, columns 3–9) withU -structure. A formal way to
do it is to exploit external indices of partition agreement.
Usually, the calculation of these scores is built on so-called
cross-tabulation, or contingency table. Entriesnij of this
table denote the number of objects that are in both clustersi

andj, i=1, . . . , N, j=1, . . . , M for two different partitions
PN andPM . We use the most known coefficients[15,30,31].
In addition, the regular Cramer correlation coefficient was
employed as well. The coefficients together withU-structure
are presented inTable 1.

U -partition is fixed and contains 3 clusters whereasP -
partitions are represented sequentially withP varying from
3 to 9 clusters.

As we can see now, the best correlation is reached in the
case when the number of PAM clusters is 7. Two-way joint
distribution, representingU -clustering andP7-partition, is
represented inTable 2.

All clusters ofP7-partition, except one, are fully included
into 3 clusters ofU -partition. We can see here almost per-
fect matching, that is, the firstU -cluster consists of three
P -clusters (4, 5, 6) only; the secondU -cluster almost co-
incides with the first one inP -partition; and the thirdU -
cluster consists of twoP -clusters. Thus, we have uncondi-
tionally found a coordinated cluster structure. It turns out
that three clusters of theU -structure are coordinated with
the clusters ofP7-structure. It is natural to ask which of the
two structures is more suitable for biological interpretation.
In our case, we are interested in determining large similarity
groups; therefore,U -structures appear to be an appropriate
tool, howeverP7-partition gives more thinly subordinated
clustering.

5.2. Biological interpretation of the partition

A main requirement should be that both representatives
of every genome occur in the same cluster. This is a formal
indication of a robust clustering. Detailed discussion of dif-
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ferent biological notions is obviously not in the scope of this
paper. However, we can see some logic in the obtainedU -
structures. Our speculation is that the presentedU -structure
largely follows a pattern of ecological convergence. Indeed,
the closest cluster to humans is the set of thermophilic
prokaryotes (seeTable 3 ). Some of the thermophilic
prokaryotes appeared to be far from the main thermophilic
cluster, but even in this case they joined other clusters by
pairs (e.g.Methanococcus jannaschii, Sulfolobus solfatar-
icus, Aeropyrum pernix, Thermus thermophilus. Note that
both S. solfataricusandAeropyrum pernixinhabit highly
extreme environments). One can speculate that high temper-
ature was the common denominator, largely converging the
genome structures of mammals and thermophilic prokary-
otes. This idea of ecological convergence is also supported
by the fact that the cluster of thermophilic prokaryotes is
represented by species that belong to both Eubacteria (Ther-
motoga maritima, Aquifex aeolicus) and Archaea (Pyrococ-
cus horikoshii, Pyrococcus abyssi, Archaeoglobus fulgidus,
and Methanobacterium thermoautotrophicum). Another
possible complementary explanatory factor in the revealed
Archaea–Eubacteria relationships may derive from differ-
entiation of prokaryotes with respect to aerobic–anaerobic
metabolism. Indeed, almost all of the prokaryotes that man-
ifested an ecological “affinity” to eukaryotes are anaerobic.
An exception isAquifex aeolicus, which is micro-aerobic
using oxygen at very low concentrations[32]. There is one
thermophilic and anaerobic organism (Methanococcus jan-
naschii) that is located distantly from the foregoing cluster.
It is, however, a strict anaerobe that dies when exposed
to oxygen. In other words, two parameters, temperature
and oxygen, can almost perfectly explain the foregoing
clustering revealed by compositional spectra. The second
U -cluster brings together Eucaria, Eubacteria, and Archaea
and we cannot connect this association with any simple
uniform pattern. The third cluster unites CG-rich genomes.

6. Conclusion

The approach of text reduction to a relatively small dictio-
nary of the proposedN-grams in the paper gives an opportu-
nity to successfully classify DNA-texts. Doing so, we have
implemented two basic clustering techniques and their co-
ordination principle. The proposedN-grams approach stems
from the desirability to address the uncertainty associated
with DNA-texts. We assume that such an approach may be
useful in the analysis of phonetic and image “texts” as well.
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Appendix

The list of species and the dustering results, i.e. PAM
structuresP3 −P9 with U -structure is presented inTable 3.
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