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Abstract

This paper is devoted to the techniques of clustering of texts based on the comparison of vocabuldsggams. In
contrast to the regulak-grams approach, the proposkBigrams method is based on calculation of imperfect occurrences

of N-grams in a text up to a number of mismatched strings. We demonstrated that such an approach essentially improves

the resolving capacity of thel-grams method for DNA texts. Additionally, we discuss a mutual usage scheme of different

clustering technique types to verify the partition quality.
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1. Introduction

Clustering problems arise in various areas of text mining
and information retrieval. Typically, given a language each
document is reduced to representation by a vector of fre-

termN-gram). He was speaking about a “discrete source as
generating the message, symbol by symi{b]’ By Shan-

non, this could be a message written in a natural language,
continuous information sources that have been rendered dis-
crete (for example, speech) and, more generally, an abstract

quencies of terms selected in an appropriate way. The next stochastic process which generates a sequence of symbols.

step relates to finding a suitable distance between the vec-
tors, such as Euclidian, Manhattan, Covariance distances,

etc. (e.g. Refs[1,2]), which could provide a reasonable di-
vision. Finally, a clustering based on the chosen distance
is performed by means of one of the partitioning methods,
e.g. resembling thé-means methofB3] or k-medoids pro-
cedured4].

1.1. N-grams technique

Probably, Shannoib] in 1948 was the first to employ
N-grams for characterizing texts (he also proposed the

* Corresponding author. Tel.: +9724990 1862;
fax: +9724 990 1852.
E-mail addresszeev@actcom.co.{Z. Volkovich).

In particular, Shannon'®N-grams were defined as formal
words (i.e. not related to their real values). Informally speak-
ing, if an object can be represented by a sequence over the
taken alphabet A, then one way of performing a feature ex-
traction is to describe it in terms of its subsequencesNAn
gram is a subsequence of lengthDespite its initial narrow
usage in the theory of communicatidk,grams were later
applied more widely including such fields as classification
of different “texts” like messages in natural and artificial
languages, music, images, etc.

Depending on the application field, this approach may
useN-grams of different length—for example, from 2 to 100
letters. The effect oN-grams lengths is discussed in detalil
in the literature. For instance, the Stores systéhsuggests
the value of N = 3 because it yields the best selectivity in
the search access rate. Other systems have used trigrams in
order to conserve memory or disk acceg§gsCavnar[8]
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employed bigrams and trigrams together in the same sys- suboptimal solutions. In fact, different methods could yield
tem assuming that bigrams provide better matching for in- diverse results. Even with a specific method, the solutions
dividual words while trigrams provide the connections be- are usually sensitive to initial conditions. Both clustering
tween words to improve phrase matching, thus complement- types may also be used togetti&6].

ing each other. Cohd®] and DamasheKL0] used 5-grams,

while Robertson and WilleftL1] used bigrams and trigrams,  1.3. Methods of comparison of DNA texts based on

with no reasons provided for these choices. It is also possi- N-grams

ble to use initiallyk-grams and then move 1@ — 1)-grams

to improve the results. Thus, Huffman and DamasHe} It is important to realize that the four chemical bases of
and Huffman[13] reached about 20% improvement of gar- DNA are exactly the same in all living organisms. Each
bled text. For Korean text retrieval, bigrams applied in com- DNA fragment may be sequenced and its sequence will au-
bination with N-grams provided the best 11-point average thentically and adequately represent it. We apply the ap-
precision[14]. proach based on thé-grams technique to cluster DNA se-

In general, a comparison of linear symbolic sequences quences representing complete genomes. The genome is the
based on thé&l-grams technique proved to be effective re- total genetic constitution of an organism. Excluding those
gardless of the origin of the sequence processed including of viruses, genomes consist of one or more double-stranded
imaging, voice processing, and music. Any such “text” is re- molecules of DNA. Certainly DNA fragments, short or long,
duced to a vocabulary of the frequencies\aframs along are molecules (biopolymers) but from an information point
the whole sequence or its pieces. Proximity between such of view these molecules may be fully characterized by their
vocabularies can then be used for text comparisons. sequences and DNA sequences are linear texts over the four

In this paper, we apply thi-grams technique for classi- letter alphabet: {A, T, G, C}. A complete genome of a rel-
fying DNA sequences considered as text over the four-letter atively simple organism is a pretty long text, hundreds of
alphabefil ={A, C, G, T}. One can consider formal words  thousands for the smallest; usually millions of letters. Hered-
of varying lengths.: word means a string of length over itary fragments of a genome are called genes. The vast ma-
the alphabell. Clearly, these words are exactly Shannon’s jority of genes code for messenger RNAs (mRNAs) that are
N-grams. However, in order to retain the standard terminol- translated into proteins, with the collection of all protein-
ogy evolved in the field of bioinformatics, we continue to coding genes within a genome referred to as the proteome.
use the term “word” for discussing concrete biological sit- Some methods of genome classification are based on reduc-

uations andN-grams in general contexts. tion of a whole genome to its proteome exclusively. The
genome also contains a small set of genes coding for struc-
1.2. Clustering technique tural RNAs. In both prokaryotes and eukaryotes, such RNAs

play critical roles in many functions. Collectively, all the

Generally speaking, most of the existing clustering meth- protein-coding and structural RNA-coding genes constitute
ods can be categorized into three groups: partitioning, hier- the genic DNA of a genome. For prokaryotes, this is the bulk
archical, and density-based approaches. We apply here parti-of the entire genome. In eukaryotes, genic DNA comprises
tioning and hierarchical methods only. Partitioning methods only a fraction (and in some cases a very small fraction) of
have the advantage of being able to incorporate knowledge the total genome.There are methods of genome taxonomy
about the size of the clusters by using certain templates and based on comparison of chosen genic elements, protein cod-
the elements’ dissimilarity in the objective function. Such an ing or RNA-coding. However, there are also methods of se-
algorithm is guaranteed to produce clustering for any data quence comparisons unrelated to genomic functional struc-
although there is currently no generally accepted way to test ture. Frequently such methods are called linguistic because
the null hypothesis of no clustering (e.g. that the data are they use variou$\-grams-based techniques.
distributed uniformly). In one of the recent reviewfl7], a few methods of

In addition, the known hierarchical clustering proce- DNA sequence analysis based on counting texiigtams
dures yield a nested sequence of partitions and, as a rule,were presented. As we mentioned above, the most accepted
avoid specifying how many clusters are appropriate. This is approach to genome comparison is to calculate similar-
achieved by providing a partition from cutting the tree (den- ity among one or more pairs of homologous genes of the
drogram) at some level. Inner statistical tests (see general genomes. This is the strategy of choice in molecular evo-
overview in Ref[15]) could hardly serve a guide on where lution studies. The methods based on counting word occur-
to cut the dendrogram. On the other hand, partitioning meth- rences cannot replace the methods based on investigation
ods may produce a tighter cluster structure than hierarchical of homologies. Nevertheless, they serve as a supporting ap-
ones and are computationally faster with a larger number proach in comparative genomics and molecular evolution.
of variables in the case of a small number of clusters. Such One form of statistical summarization is based on analyzing
methods do not usually do well with non-globular clusters, frequencies of oligonucleotides (DN®-grams). For exam-
and the difference between various partitioning methods ple, considering\ equal to four, there are 256 different 4-
lies in the strategies of making a compromise to find grams (256 tetranucleotides over the DNA alphabet). One
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can treat the set of tetranucleotide frequencies as a statisti-discussed in Section 5 on the basis of formal and biologi-
cal summary of the given DNA sequence. By using the fre- cally meaningful criteria. The list of species and the clus-
quency distributions of tetranucleotides, one can carry out a tering results are given ifiable 3in the appendix.
comparison between a pair of DNA sequences. It was shown

many times that this method could reveal certain biologi-

cally significant features in a DNA sequence (see, for exam- 2. Dictionary of N-grams for DNA text

ple, Refs.[18-20). This methodology assumes thdtthe

fixed given size of theN-words) is relatively small allow-  2.1. Calculating compositional spectrum (CS)
ing for computationally reasonable and statistically justified
sequence comparisons. In accordance with our previous definitiof2d] as a per-

There are biologically motivated improvements of such fectoccurrence in a target sequeso@eansr is a substring
a methodology. One direction of development lies in a se- Of string S. Word y is an imperfect occurrence aof in §
rious increase of word length. Kirzhner et f21,22] pro- meansy is a substring ofS, and distance (in a given met-
posed a novel natural approach to characterize genomic se-fic space) between andy is less than a threshold (in the
quences. According to this approach, a genomic sequencegiven metrics). Word is an imperfect occurrence af; in
is reduced to a histogram of imperfect occurrencesNof S if Hamming distance between worg; and wordx less
grams. High flexibility characterizes this approach due to than given-. This approximate matching can be denoted as
an allowance for imperfect matching, so that relatively long “r-mismatching”.
words comprising the compositional spectra can be consid-  Let us consider a sé¥ (dictionary) ofn different words
ered. The similarity of spectra obtained on different stretches (oligonucleotides in biochemical terminology) of length
of the same genome, and, simultaneously, a broad range ofL. n <4%, where 4 are the total number of maximally pos-
dissimilarities between spectral representations of different Sible different words of lengtt. The quantity: is assumed
genomes, justify the usefulness of compositional spectra as relatively small. Bym; we denote the number of imperfect
an informative genome characteristic. occurrences of woray; of the setW in a target sequence
We analyzed different values @ and possible dimen- S : m; = ocqw;|S). Now let M = Zm;. The vector of fre-
sions of N-grams vectors. It appeared that in the case of quency distribution? (W, S) of f; =m; /M will be referred
a DNA text, a set of 200N-grams with N = 10 may be to as a compositional spectrum of the sequence S relative to
sufficient to successful clustering of DNA sequences. As it the setw.
was mentioned above the issue of the numbeN-gframs
(i.e. dimension of a corresponding vector) appears to be 2.2. N-grams selection and dictionary composition
very widespread. Usually, the suggestion is to include all
N-grams. Their potential number grows exponentially, yet ~ The pre-selected s&éf of N-grams effectively distinguish-
the real number, evidently, is confined by the length of a ing the texts may (a) not be attached to the texts beforehand,
specific text. It is also important to mention that in contrast (b) not be unique, and (c) be relatively small. In particular,
to usualN-gram techniques, we have determined the occur-
rence of a giverN-gram in a text with certain inaccuracy (a) For any given parameteis and n we consider a set
[21]. Indeed, small local “mismatching” in a genetic text is W as a random sample from the set of all possikie
usually considered routine in biological systems, as opposed  grams with a sampling procedure that can be represented
to linguistic texts, when the number of such mistakes should as a stochastic procedure of word generation. Let the

be very limited. In addition, by the allowance of a certain words be produced by sequentially adding new letters
level of mismatching, we obtain better frequency statistics: (out of the four-letter alphabet) with equal probability of
instead of tens of occurrences of eddfgram we can get appearance of each letter at the new currently generated
hundreds and thousands. position. We call such stochastic procedure uniformly
In this paper, we analyze possible distances in the space of  random and any resulted random set W of words will
N-gram frequencies from the viewpoint of clustering DNA also be referred to as a uniformly random set. Thus, we

texts. Two clustering approaches are employed. The first select a seW independently of the current base of the
one, WPGMA, is agglomerative whereas the second one,  texts.

Partition Around Medoids (PAM or the-medoids), isapar-  (b) Every uniformly random set defined in (a) may be used
tition algorithm. The obtained results are compared keeping as anN-gram dictionary. Theoretically, different dictio-

in mind biological interpretations. naries may result in a different correlation between text
The article is arranged in the following way. In Section distances. However, the remarkable fact is that this is
2 we describe, based on our previous wfizk,22] the N- not the case for DNA textf21]. In particular, a very

grams method as applied to DNA texts. In Section 3, we high correlation is characteristic for sequences taken ran-
compare characteristics of several distances from the view-  domly from the same genomes.

point of clustering genomes (DNA sequences). In Section (c) Concerning the size of the dictiona® and a fixed

4, we describe clustering methods and results, which are length of a word in the dictionary, the following



considerations based on our previous massive compar-

isons may be helpfyR1]. Remarkably, selection of ap-

propriate dictionary parameters depends on a text size.

As a first step of reduction, we randomly chose a contin-
uous genome fragment of the sizg =500, 000 bp. Ex-

cept a few small parasites, all organisms have genomes

larger than 1 Mbp, so a random extraction of such a
fragment is possible leaving the rest of a genome for the
verification of results. A next step is to choose a size
for a N-gram dictionary. There are a few different con-
siderations in a choice of this parameter. From the bio-
logical point of view, the length should be in the range
of 8-20 bases, typical for protein binding sites. A next
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Testing of various dictionaries with such parameters
showed, thatCS various parts of genomes of the size of
500,00 bp appeared to be practically identical.

2.3. Material

The described approach was applied to the analysis of
cluster structures in a set of genomes including DNA se-
quences of 37 species of Eukaryota, Eubacteria, and Archaea
(see AppendixTable 3 column A).

parameter, a number of mismatches should correspond 3+ Distances in the compositional spectra space

to about 20-30% of a site length. Alternatively, it is
possible to get a theoretical estimate of a character word
length. For this purpose we would use the theory used
in DNA sequencing and technology, which was named
sequencing by hybridization (SBH). According to this
approach the whole sequence of the lenytlis recon-

structed from a complete set of its subsequences of the

predefined lengthN-grams). This theory also considers
a possibly ambiguous reconstruction resulting in a few
variants of a whole sequence, so the theory provides “the
probability of unique reconstruction”. Theoretical esti-
mations for the chosen length of the text (500,000 bp)
give the following values: sizd. from 10 (words as
patterns with gaps of un-sampled positions—imperfect
matching with a number of mismatches close to 20% of
the L value), up to 20 letters (perfect matchifff—25]

It is obvious, that a problem of reconstruction, especially
partial, is similar to a problem of classification. Thus, bas-
ing both on empirical and theoretical considerations we took
sets of words of a fixed length from 10 up to 20. In a text of

By definition, a compositional spectrum of the sequence
S relative to the seW is a vector of frequencie8 (W, S).
There are various methods to measure dissimilarity be-
tween two distribution-vectors = (tq,t2,...,t;) and
U = (U, Uz,...,Uy). In this paper we compare several
possible distances.

It is associated with one of the famous problems of the
Cluster Analysis concerning the identification of the opti-
mum number of clusters. As the synthesis process contin-
ues, increasingly dissimilar clusters must be fused, i.e. the
classification becomes increasingly artificial. Usage of the
histogram of distances appears to be the most appropriate
way to handle this problem (see R€fig6,27]). Namely, lo-
cal minima of the histogram of all pairwise distances make
a cluster structure of the data such that the masses of all lo-
cal peaks indicate the density of the clusters’ concentration.
(A number of local minima could provide a lower bound for
the number of possible clusters.) Note that this methodol-
ogy makes it possible to assess the discriminating capabil-
ities of a distance measure without running any clustering

500,000 letters a word of the length 10 has in average about Procedure. For example, detection of two essential local his-

10 perfect occurrences. Allowing two mismatches numbers
of imperfect occurrences of words of length 10 vary in sig-
nificant range—from hundreds up to thousand. It creates

stretched enough scale. At significant increase in length of

a word, sayL = 15, allows the number of mismatcheso
grow from 7 to 8 if we consider the same number of words

togram minimum points leads to an assumption that there

are at least three clusters.

We examined the next distances:

1. The Euclidian distance that is defined for two distribu-

tions
t=(t1,1to,..

.,tp) andu = (uq, us, ..., u,) by the con-

(for e.g. 8) in sequences of the same length, i.e. the number Ventional way as

of identical letters remains constant—about 8. Therefore we
chose parametels = 10, r = 2 though, it seems that, some
variation of these parameters is insignificant for the further
considerations.

The sizen of the dictionary was established empirically
minding a problem of further clustering. For this procedure
we took a set of approximately 50 genomes. In one cycle
of the procedure for the fixed dictionary of the sizeall

pairwise distances between any pair of those genomes were

calculated. Repeating this step for 100 dictionaries of the
lengthn we obtained an average dispersion as a function of
n. The saturation happened arouma= 200. Thus, in this
study we deal withC S for parameterd. =10, n =200, r =2.

dy(t,u) =Y (t; — uy)?.
i=1

2. The Manhattan distance
n
da(t,u) =) " abgt; —up).
i=1
3. The Max-distance

dz(t, u) = maxabst; —u;).
l
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4. KSlike distance, in the case when the coordinates of
the vectord andu can be interpreted as frequencies

da(t, u) = max|F; — U;],
l

where

i i

=1l > =1U;j
=S Uj= ===+
j

Fi =
=1 =1U;
are the relative cumulative distributions. This distance is as-
sociated with the well-known Kolmogorov—Smirnov statis-
tics.
5. The correlation dissimilarity

ds(t,u) = (1— R(t,w)/2,

whereR(t, u) is the Pearson correlation coefficient.
6. The Spearman dissimilarity

wherep(t, u) is the Spearman rank correlation coefficient.
7. The Kendall dissimilarity

d7(t,u) = (1 —(t,u)/2,

wherez(t, u) is the Kendall rank correlation coefficient.

We investigated all distances according to their potential
ability to produce a “meaningful” partition using the same
set of 37 chosen species (Appendix). We have also taken
two sequences 300—400 kb long from each genome, exclud-
ing the Human genome (where 11 sequences were taken).
Thus, the initial set (database) included 85 sequences. Such
a structure of the database (more than one sequence from
every genome) will allow a natural control of the grouping
quality in data. Then, the compositional spectrudagifam
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Fig. 1. Histogram of the Euclidian distance.
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Fig. 2. Fig. 2 Histogram of the Kendall distance.

vector) had been calculated for every sequence as described

in Section 2.

According to the obtained results, we divided all distance
measures into two groups. The first group included: Eu-
clidian, Manhattan, Max, anidS-like distances. The second
group contained the dissimilarities based on correlation: Per-
son, Spearman, and Kendall. A typical example of the dis-
tance histogram in the first group is given by the Euclidian
distance Fig. 1).

This histogram points to a possibility of two or three clus-
ters being very different in their sizes. However, generally
speaking, it looks like one big cluster. This fact could be in-
directly demonstrated by an attempt to group the data into
two clusters using th&-means algorithm. The final parti-
tion becomes unstable from the point of view of the Mul-
tivariate MANOVA procedure. It is very hard to expect a

reasonable clustering to be obtained by means of such in-

appropriate measure.

An example of a histogram for the second group is pro-
vided in Fig. 2, using the distance based on Kendall rank
correlation coefficient.

One can recognize here some three local minima of the
histogram, but disparities between masses of the local max-
imum areas are not so considerable compared to the previ-
ous group of distances (sé&g&g. 1). This fact allows us to
assume three or more clusters in the data.

We can observe three major local minima of the his-
togram, but disparities between the masses of areas corre-
sponding to the local maxima are not so considerable com-
paring those in the previous group of distances. Therefore,
we can assume that there are three or more clusters in the
data. Consequently, the second group seems to be prefer-
able for the effectiveness of the subsequent clustering. The
second group also includes a measure based dxd-tirams
vector correlation that is often used for building distance ma-
trices. However, we used the distance based on the Kendall
coefficient that seems to give the best estimation of the clus-
ter structure.
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4. Clustering data its estimated membership probability. A cluster is consid-
ered “stable” if the majority of the marked elements possess
Using the distance based on the Kendall coefficient we significantly higher probability values in tHé-cluster than
apply two clustering methods corresponding to two different the non-marked ones do.

clustering techniques—hierarchical and partitioning. We conducted this test 100 times with 100 different (but
uniformly distributed) dictionaries (accordingly, using the

4.1. Weighted pair group method with arithmetic mean produced distance matrixes) with the same paramétess

(WPGMA) 10,n =200, andr = 2. Then, we calculated the percentage

of occurrences of every element (OUT) in this or that cluster
The WPGMA is the simplest method of tree construc- within all 100 tests. For example, the result obtained for the
tion [28]. It was originally developed for constructing taxo-  first cluster is reproduced iRig. 3
nomic phenograms, i.e. trees that reflect the similarities be- ~ Averaging-out was done with 100 runs using 100 dif-
tween elements of finite sets. In evolutionary studies these ferent setsW. X-axis represents all 11 sampled human
elements are usually referred to as operational taxonomic genome sequencesigmo sapienghromosomesX, ¥ and
units (OTUs). In order to get an idea about cluster stabil- 1,3,4,6,7,11,13,20,22) and (for simplicity) one of the two
ity, we complement the WPGMA method by the following Ssequences per genome for all remainder species (if both se-
procedure that will be clarified through the treatment of our guences for each genome were represented they would ap-
major data set on 37 species. pear as adjacent neighbors). The vertical axis shows the per-
The procedure is as the follows. As it was noted in the centages of occurrences of each species in the given cluster.
previous paragraph the number of clusters in the consid- The species identified as the cluster members are marked
ered species collection appears to be not less than three. Weby squares on the lower curve. We see that this cluster has
used the WPGMA method to divide the set into three clus- @ kernel appearing in no less than 75% of the cases and
ters and considered the validation of each cluster by means random components appearing in not more than 20% of the
of the following approach. First of all, we mark the clus- cases. This kernel can be considered as a cluster.
ter elements and repeat times the hierarchical WPGMA Similar calculations were done for the other two clusters,
procedure based on various distance matrixes (wheig the result being representedTable 3 column 2. We refer
a pre-selected number). These matrices are built on someto the obtained clustering a$-clustering.
randomly chosen dictionaries and corresponding composi-
tional spectra. The clusterization procedure is stopped if at 4.2. Partitioning around medoids
least 75% of the marked items are concentrated in a one of
the formed clusters. Reiteration of the described procedure  The partitioning around medoids (PAM) method was
for another distances template can lead, generally speak-introduced by Kaufman and Rousseel4}. The PAM pro-
ing, to another cluster. As a result, each data set elementcedure gets as its arguments a dissimilarity matrix of the
gains an array of the relative frequencies of the member- €lements and suggests the number of cluiteFéie routine
ship. Thus, a data set together with an attached occurrenceis built on searching fok representative objects, or medoids,
table is calledU-cluster; i.e. each element is presented by around the points to be clustered. The clusters are created
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Table 1
Different correlation coefficients af/- and P-partitions

3 4 5 6 7 8 9
Cramer’s_V 0.6165 0.8138 0.8891 0.9537 0.9825 0.9825 0.9825
Rand 0.679 0.8364 0.8654 0.899 0.9127 0.9099 0.9055
Jain & Dubes 0.4511 0.589 0.625 0.6858 0.7146 0.7049 0.6925
Fowlkes & Mallows 0.6351 0.7403 0.7745 0.8325 0.8613 0.8563 0.8474
Table 2
Two-way joint distribution of 3 clusters af/-partition andP7-partition
Clusters 1 2 3 4 5 6 7
1 0 0 0 11 6 8 0
2 34 0 0 0 0 0 2
3 0 14 8 0 0 0 2

by passing on each element to the most similar medoid.
The algorithm seeks for an optimal value of the sum of the
dissimilarities of the observations to their closest medoid.
A minimum partition for the objective function is a final

example of a coordinated structure, then clustering frag-
mentation must be considered inadequate. However, even
if a non-trivial coordinated structure is achieved, cluster
fragmentation might be close to the trivial one, e.g. with

medoids-set, such that no single movement of an observationthe number of P-clusters close to the total number of
relative to the medoids can decrease the objective function elements.

value. The PAM approach looks more robust and efficient
than the knowrk-means algorithm and is implemented in
clustering packageR and S-Plus.

4.3. Verifying the results of clustering

When using the hierarchical method, we rested upon an
estimate of a number of clusters obtained in Section 3. Ac-
cording to this estimate, the number of clusters when us-
ing the Kendall coefficient for compositional spectra of 37

In order to characterize the quality of the coordinated
structure, we employed several correlation coefficients.
Keeping in mind reaching a coordinated structure with a
minimal number ofP-clusters, we subsequently calculate
the partitionsP3, Py, ..., etc. until the achievement of a
coordinated cluster structure. It is interesting to note that
coordination is not a “heritable” feature. In particular, if the
PAM cluster structure with some given number of clusters
T is coordinated with a given hierarchical structure, then it
is not necessary that for a value greater tiahe structure

species is expected to be no less than three. However, theWill also be coordinated.

actual number of clusters may be greater. Disagreement be-

tween the amounts of clusters determined by different pro-
cedures may derive from the fusion of several smaller clus-
ters into one big cluster.

The results of clustering with PAM method {clusters)

substantially depend on the chosen number of clusters.

Therefore, we decided to use the PAM method for calcu-
lation of the cluster structure starting from three as the
minimum number of clusters. The intention is to get a “cor-
rect fragmentation” of the 3-cluster structure found earlier
with the hierarchical method. Namely, we refer here to such
a fragmentation, with PAM method, when evePycluster

of this fragmentation intersects only obecluster. We call
such a kind of mutual cluster structure as a coordinated
structure. We believe that such a coordinated structure

5. Results
5.1. Coordinated cluster structure

As it was mentioned above, clustering aims at extracting
inner structure in a data. A fundamental question referred
to as the problem of cluster validation, i.e. the problem
of judgment the “correct” number of clusters. In general,
clustering algorithms make different assumptions about the
set structure. Since for the cases of interest one does not
know whether these assumptions are satisfied by the data,
different clustering methods lead to a variety of answers. For
that reason a universal method of finding the true number of

makes possible the restoration of genuine clustering. Note clusters for given data does not exist. However, in the spirit

that the coordinated structure always exists, for example,
in the trivial situation when the number df-clusters is
equal to the number of elements. If this case is the only

of Roth et al.[29], we can consider the notion of cluster
stability as a criterion for this purpose. In our case, this
concept suggests good matching between PAM partitions
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Table 3
Summary table of the used species and tiigirand P-partitions

A B 3 4 5 6 7 8 9

Operational taxonomic units U-structure PAM PAM PAM PAM PAM PAM PAM

Homo sapienghr. X
Homo sapienghr.
Homo sapienghr.
Homo sapienghr.
Homo sapienghr.
Homo sapienghr.
Homo sapienghr.
Homo sapienghr.
Homo sapienghr.
Homo sapienghr. 20

Homo sapienghr. 22

Pyrococcus hor

Pyroccocus hor

Methanobacterium thermoautotroph
Methanobacterium thermoautotroph
Archaeoglobus fungulus
Archaeoglobus fungulus

Aquifex aeolicus

Aquifex aeolicus

A. thalianamitochondrial genome 1
A. thalianamitochondrial genome 1
Thermotoga maritima
Thermotoga maritima
Pyrococcus abyssi
Pyrococcus abyssi
Caenorhabditis elegans
Caenorhabditis elegans
Synechocystisp.
Synechocystisp.
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Arabidopsis thaliana
Arabidopsis thaliana
Drosophila melanogaster
Drosophila melanogaster
Methanococcus jan
Methanococcus jan
Streptococcus pyogenes
Streptococcus pyogenes
Borrelia burgdorferi
Borrelia burgdorferi
Bacillus subtilis

Bacillus subtilis
Helicobacter pylori
Helicobacter pylori
Mycoplasma genitalium
Mycoplasma genitalium
Enterococcus faecalis
Enterococcus faecalis
Mycoplasma pneumoniae
Mycoplasma pneumoniae
Campylobacter jejuni
Campylobacter jejuni
Haemophilus influenzae
Haemophilus influenzae

PPN MR

PRPPRPPPPPP LR RrRrRRRRPER

O000000000000O0000000000000ON NNOO0O0O00000O0OONOROO0OO0O 000000 OO
O000000O0000O000O0O0O0O0O00O00O0O0O0ON NNOOO0O0OOWWOONWMWMOO ¢y wwwWww www w
OC0OO000O0O0O0O0O000O0O0O0OO0O0O0O0O0O0OO0O0O0O0O N NOOOORRMWWRARMRRARAMRNOOD (iwmbmomw®w®Wwwwww
OC000000000000O00000000000O0ON NNVNOOUUARUUTTURRRERDUI U howoowmowwwwwww
D000 000O000000O0000000000000EEOOUUARMUUTRURREREDRNIDU U hwoowomowowwwwww
O0O0000DO0DO0000O000O0O0000000O0000G5EOOUUTARMUUTRURARIBDIDU U weowowoowwwwww
OO0 00O0O0O0O0O00O0O0O0O0O0O0O0O0O0O0O0O0O0O0OEEOOUUTARNUIUIUIUAROGO®U Ul gy gy wwWwwww w w

NNNPNPDNNNONNNODNNNDNNNNDNNDNNNNNNNNNNNNNN OONDNNRERERRPRE
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Table 3 ¢ontinued

A B 3 4 5 6 7 8 9

Operational taxonomic units U-structure PAM PAM PAM PAM PAM PAM PAM

Sulfolobs solfat

Sulfolobs solfat

Clostridium acetobutylicum
Clostridium acetobutylicum
Rickettsia prowazekii
Rickettsia prowazekii
Escherichia coli

Escherichia coli

Treponema pallidum
Treponema pallidum
Thermus thermophilus
Thermus thermophilus
Mycobacterium tuberculosis
Mycobacterium tuberculosis
Neisseria meningitides
Neisseria meningitides
Neisseria gonorrhoeae
Neisseria gonorrhoeae
Leishmania major
Leishmania major
halobacterium SRc-1
halobacterium SRc-1
Deinococcus radiodurans
Deinococcus radiodurans
Pseudomonas aeruginosa
Pseudomonas aeruginosa
Actinobacillus actinomycetemcomitans
Actinobacillus actinomycetemcomitans
Aeropyrum pernix
Aeropyrum pernix

WWWWWWowWwowWwowowowowaowaowowowowowowowowaowowwinNnNNNRN
PR NORRPRRPREPREPRPRPRPNNNNRPRRPRERPRENNNNOOOOOO
PR NORRPRRPREPREPRPRPRPNNNNRPRPRERPRENNNNOOOOOO
PR NORRPRRPREPREPRPRPRPNNNNRPRPRERPRENNNNOOOOOO

PNORRPRRPRPREPRPRPRERPNNNNRPRPRPRENNNNOOOOOO
PR OORRPRPREPREPRPRPREPNNNNRPRPRERPRENNNNOOOOOO
PR OORRPRPREPREPRPRPREPNNNNRPRRPRPRELNNNNOOOOOO
PR OORRPRPREPREPRPRPREPNNNNRPRPRPRELNNNNOOOOOO

[N

A—list of species; B—¥/-partitions (different clusters are marked by different numbers); (3-#)partitions with corresponding numbers
of clusters.

and U-structure. Moreover, we are interested to reach a  All clusters of P7-partition, except one, are fully included
partition having suitable biological interpretation. into 3 clusters ofU-partition. We can see here almost per-
Let us compare PAM-structureBz—Pg (see appendix, fect matching, that is, the firdy-cluster consists of three
Table 3 columns 3-9) withU-structure. A formal way to P-clusters (4, 5, 6) only; the secorid-cluster almost co-
do it is to exploit external indices of partition agreement. incides with the first one inP-partition; and the thirdJ-
Usually, the calculation of these scores is built on so-called cluster consists of tw@-clusters. Thus, we have uncondi-

cross-tabulation, or contingency table. Entrigs of this tionally found a coordinated cluster structure. It turns out
table denote the number of objects that are in both clusters that three clusters of th&-structure are coordinated with
andj,i=1,..., N, j=1,..., M for two different partitions the clusters ofP7-structure. It is natural to ask which of the
Py and Py . We use the most known coefficierit$,30,31] two structures is more suitable for biological interpretation.

In addition, the regular Cramer correlation coefficient was In our case, we are interested in determining large similarity
employed as well. The coefficients together wilistructure groups; thereforel/-structures appear to be an appropriate
are presented ifiable 1 tool, however P7-partition gives more thinly subordinated

U-partition is fixed and contains 3 clusters wherdas clustering.
partitions are represented sequentially wittvarying from
3 to 9 clusters.

As we can see now, the best correlation is reached in the
case when the number of PAM clusters is 7. Two-way joint A main requirement should be that both representatives
distribution, representing/-clustering andp7-partition, is of every genome occur in the same cluster. This is a formal
represented iffable 2 indication of a robust clustering. Detailed discussion of dif-

5.2. Biological interpretation of the partition
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ferent biological notions is obviously not in the scope of this  Appendix

paper. However, we can see some logic in the obtalied
structures. Our speculation is that the preseiftestructure

The list of species and the dustering results, i.e. PAM

largely follows a pattern of ecological convergence. Indeed, structuresPz — Pg with U-structure is presented Fable 3

the closest cluster to humans is the set of thermophilic
prokaryotes (se€Table 3). Some of the thermophilic

prokaryotes appeared to be far from the main thermophilic References

cluster, but even in this case they joined other clusters by
pairs (e.g.Methanococcus jannaschiBulfolobus solfatar-
icus, Aeropyrum pernixThermus thermophilusNote that
both S. solfataricusand Aeropyrum pernixinhabit highly
extreme environments). One can speculate that high temper-
ature was the common denominator, largely converging the
genome structures of mammals and thermophilic prokary-
otes. This idea of ecological convergence is also supported
by the fact that the cluster of thermophilic prokaryotes is
represented by species that belong to both EubaciEniar{
motoga maritimaAquifex aeolicusand ArchaeaRyrococ-

cus horikoshii Pyrococcus abyssArchaeoglobus fulgidys
and Methanobacterium thermoautotrophicumAnother
possible complementary explanatory factor in the revealed
Archaea—Eubacteria relationships may derive from differ-
entiation of prokaryotes with respect to aerobic—anaerobic
metabolism. Indeed, almost all of the prokaryotes that man-
ifested an ecological “affinity” to eukaryotes are anaerobic.
An exception isAquifex aeolicuswhich is micro-aerobic
using oxygen at very low concentratiof82]. There is one
thermophilic and anaerobic organisid€thanococcus jan-
naschi) that is located distantly from the foregoing cluster.
It is, however, a strict anaerobe that dies when exposed
to oxygen. In other words, two parameters, temperature

and oxygen, can almost perfectly explain the foregoing [11]

clustering revealed by compositional spectra. The second
U-cluster brings together Eucaria, Eubacteria, and Archaea
and we cannot connect this association with any simple
uniform pattern. The third cluster unites CG-rich genomes.

6. Conclusion

The approach of text reduction to a relatively small dictio-
nary of the proposel-grams in the paper gives an opportu-
nity to successfully classify DNA-texts. Doing so, we have
implemented two basic clustering techniques and their co-
ordination principle. The proposédigrams approach stems
from the desirability to address the uncertainty associated
with DNA-texts. We assume that such an approach may be
useful in the analysis of phonetic and image “texts” as well.
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