
J. theor. Biol. (2003) 221, 625–638
doi:10.1006/jtbi.2003.3212, available online at http://www.idealibrary.com on
Mathematical Frameworks for Phenotypical Selection and Epistasis

Yuri Lyubichw andValery Kirzhnerz

wDepartment of Mathematics, Technion, Haifa 32000, Israel and zInstitutes of Evolution University of
Haifa, Mount Carmel, Haifa 31905, Israel

(Received on 29 June 2001, Accepted in revised form on 18 November 2002)

A mathematical approach to interactions between genotypes and phenotypes in a multilocus
multiallele population is developed. No a priori information on a fitness function is required.
In particular, some structural definitions of epistasis and the position effect are given in terms
of a decomposition of phenotypical structures. On this base a distance to the additive non-
epistasis is introduced and an explicit formula for it is obtained. A class of phenotypical
structures including multilocus dominance is described in terms of directed graphs. The
evolutionary equations are adjusted to a fitness function compatible with a phenotypical
structure. Some results on the finiteness of the equilibria set are presented.
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1. General Notions

The concepts of genotype and phenotype are
both fundamental in theoretical population
genetics. Moreover, as it was emphasized by
Lewontin (1974, Chapter 1), the phenotypical
variables must be substantially taken into
account in the dynamical theory of evolution.
In Yablokov (1986) the phenetics is developed
in a purely biological context. In the present
communication we discuss an adequate mathe-
matical design for the phenotypical selection and
consider some related evolutionary problems.
The most complicated mathematical proofs of
some statements we quote can be found in
Lyubich et al. (2001).
Let Z be the set of all zygote genotypes

(zygotes, for short) in a multilocus multiallele
population. A classical principle states that the
phenotypes of individuals are determined by their

genotypes (up to a statistical deviation we ignore
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here). Thus, there is a set F of phenotypes and
a genotype–phenotype mapping, (GP-map) j :
Z-F; so that for any zygote zAZ its phenotype
is jðzÞAF: We call the triple (Z;F;j) the
phenotypical structure of the population.
Given a phenotypical structure (Z;F;j) and

a phenotype fAF; the set of all z with phenotype
f is called a phenotypical class. The set Z is the
union of pairwise distinct phenotypical classes
which form the phenotypical partition of Z. Later
on we do not distinguish phenotypical structures
with the same partition, i.e. isomorphic in this
sense.
Any partition of Z determines the phenotypi-

cal structure for which F is the set of classes
of the partition. Then for every zygote z the
phenotype jðzÞ is the class containing z. This is
an universal way of obtaining all phenotypical
structures up to isomorphism.
Note that a similar abstract scheme is applic-

able to modern genomics with the DNA
sequences as genotypes and the secondary
RNA structures or the corresponding proteins
r 2003 Elsevier Science Ltd. All rights reserved.
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as phenotypes (cf. Wright, 1968; Schuster et al.,
1994; Fontana & Shuster, 1998).
Let (Z;F;j) and (Z;C;c) be two phenotypi-

cal structures with the same zygote set Z. We say
that (Z;C;c) is larger than (Z;F;j) or, equiva-
lently, (Z;F;j) is finer than (Z;C;c), if every
(Z;C;c)-class is the union of some (Z;F;j)-
classes. In terms of GP-maps this means that
there exists a mapping yF-C such that cðzÞ ¼
yðjðzÞÞ; zAZ:
In the simplest situation all zygotes are of the

same phenotype. We call such a phenotypical
structure neutral. This structure is the largest
one, i.e. this is the enlargement of every
phenotypical structure with the same Z.
In the opposite situation the phenotypes of

distinct zygotes are distinct. We call such a
phenotypical structure separative. This structure
is the finest one, i.e. this is the refinement of
every phenotypical structure with the same Z.

2. One-locus Phenotypical Structures

Consider a diallele locus with alleles A and a.
There are three zygotes AA, aa, Aa� aA and five
phenotypical structures: (1) neutral: the only
class is {AA, aa, Aa}; (2) separative: the classes
are: {AA}, {aa}, {Aa}; (3) numerical: {AA, aa},
{Aa} where the phenotypes can be identified with
the numbers 1 or 2 of different alleles; (4)
Mendelian dominant: {AA, Aa}, {aa} or {AA},
{aa, Aa}.
In general, the alleles at a locus are a1, ..., am

where mX2: Then the zygotes are aiak � akai:
Thus, the number of zygote genotypes is mðm þ
1Þ=2; namely, there are m homozygotes aiai and
mðm � 1Þ=2 heterozygotes aiak iok: It is clear
that the total number of phenotypical structures
rapidly increases with the growth of m. Yet the
number of phenotypical structures with just two
phenotypes is equal to

2
mðmþ1Þ
2

�1 � 1:

See Cotterman (1955) and Bennet (1957) for
more information.
Fortunately, the most interesting phenotypical

structures are rather special. In particular, some
classical one-locus phenotypical structures are
determined by dominance. We will describe this
phenomenon in terms of a directed graph (the
dominance graph) with vertices a1; ::: ; am and
arcs ai-akðiakÞmeaning ‘‘ai dominates ak’’, i.e.
the phenotypes of the heterozygote ai ak and the
homozygote ai ai coincide. Let the homozygous
phenotypes be pairwise distinct. Then the
dominance graph turns out to be antisymmetric,
i.e. ai-ak is incompatible with ak-ai. In
addition, if some ai and ak are codominant

(i.e. ai does not dominate ak and ak does not
dominate ai) then there are no arcs between ai

and ak in both directions. The completely
codominant situation is just the separative
phenotypical structure.
For example, at the locus controlling the MN

blood group system the genotypes MM, NN,
MN are recognized by two antisera: anti-M and
anti-N. In absence of anti-N the separative
phenotypical structure effectively turns into the
Mendelian dominant fMM;MNg; fNNg: The
graph for the latter is M-N: This observed
phenotypical structure is larger than the hidden
one which is observed in the presence of both
antisera.
For the classical blood group system with

three alleles A, B, O, the dominance graph is
A-O’B; in particular, A and B are codomi-
nant. The corresponding phenotypical classes
are fOOg; fAA;AOg; fBB;BOg; fABg:
In fact, it is known that the allele A is a family

of several alleles, for example, A1 and A2, where
A1 dominates A2 (Li, 1976, Chapter 5, Section
10). The corresponding dominance graph is

A1 A2

O B

The phenotypes are {OO}, {A1A1, A1A2,
A1O}, {A2A2, A2O}, {BB, BO}, {A1B}, {A2B}.
By enlargement {OO}, {A1A1, A1A2, A1O,
A2A2, A2O}, {BB, BO}, {A1B, A2B} and
identification A1�A2(� A) we return to the
initial system.
Antisymmetry is a characteristic property of

dominance graphs. Indeed, we can start with
any directed antisymmetric graph D with vertices
a1; :::; am and then we can recover the phenoty-
pical structure the dominance graph of which
is D. Namely, we attribute some pairwise distinct
phenotypes fi to the homozygotes aiai 1pipm:
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Then the same fi becomes the phenotype of the
heterozygote aiak such that ai-ak in D. (There
is no collision since D is antisymmetric.) In
absence of arcs between ai and ak the hetero-
zygote aiak gets a specific phenotype fik ¼ fki:
(‘‘Specific’’ means ‘‘different from all other
phenotypes’’.)
The extreme situation arises if the graph D has

no arcs at all (the empty graph). The correspond-
ing phenotypical structure is separative.
For a directed graph D antisymmetry means

that there are no oriented cycles of length 2 in D.
If there are no oriented cycles at all, the graph
is called acyclic, see Harary et al. (1965). In the
following example an antisymmetric graph is not
acyclic:

a1

a2 a3

Actually, this is a cycle of length 3. Here we
have a non-standard situation: a1 dominates a2
and a2 dominates a3 and, finally, a3 dominates
a1. The corresponding phenotypical structure is
fa1a1; a1a2g; fa2a2; a2a3g; fa3a3; a3a1g:
Obviously, the empty graph is acyclic. All the

above-mentioned concrete dominance graphs
are acyclic.
Actually, a directed (not necessary antisym-

metric) graph G can be associated with an
arbitrary phenotypical structure (Z;F;j). Its
vertices are a1; :::; am; as before, and
ai-akðiakÞ if and only if there exists aj such
that the phenotypes of zygotes aiai and ajak

coincide, i.e. jðajakÞ ¼ jðaiaiÞ: In the case of
dominance aj ¼ ai; therefore, G ¼ D: For exam-
ple, A2a for the neutral diallele structure while
A - a or a - A for the diallele Mendelian
dominant structure. For both separative and
numerical structures the graphs are empty. It
immediately follows from the above definition
that for any number m of alleles the graph G is

empty if and only if the homozygous phenotypes
are specific. By the way, we see that the same
graph can correspond to more than one pheno-
typical structure.
In general, the graph G describes those

interactions between alleles which are immanent
for the phenotypical structure. We call G the
graph of phenotypical heredity. Two phenotypical
structures with the same graph G should be
determined by some additional factors other
than the above-mentioned interactions.
We conclude this section with one more

illustrative example. Consider a locus with three
alleles a1, a2, a3. The graph of the phenotypical
structure

fa1a1; a2a3g; fa2a2g; fa3a3g; fa1a2; a1a3g

is a2’a1-a3: This is also the dominance graph
coming from the phenotypical structure where a1
dominates both a2 and a3 but a2 and a3 are
codominant so, the classes are

fa1a1; a1a2; a1a3g; fa2a2g; fa3a3g; fa2a3g:

An interpretation of the first phenotypical
structure is: a1a2 and a1a3 are lethal while a1a1
and a2a3 survive.

3. Multilocus Phenotypical Structures

We use the following convenient mathematical
description of multilocus genotypes (cf. Lyubich,
1992, Section 6.1). Let L ¼ f1; y; lg be a set of
autosomal loci with alleles aik at the i-th locus,
1pipl; 1pkpmi; miX2: The gamete genotypes
(gametes, for short) are commutative combina-
tions of the form g ¼ a1k1 ; y; alkl

: Every pair of
gametes ðg; hÞ determines a zygote z. Conversely,
for any zygote z the corresponding pair ðg; hÞ is
determined up to permutations of homologous
chromosome. However, we will write z ¼ ðg; hÞ
for simplicity. In particular, the homozygotes
are ðh; hÞ:
For each subset UCL and for any gamete g

the subgamete gU is the combination of those
genes from g which are situated in U. For any
UCL and V ¼ LWU we have gU gV ¼ g (up to a
reordering of the combined genes). The parti-
tions U jV correspond to all formally possible
crossing-overs. The probability of a partition
U jV is denoted by rðU jV Þ; so that

rðU jV ÞX0;
X
U jV

rðU jV Þ ¼ 1:

(In real populations most of the crossing-overs
have very small probabilities.)
Under the crossing-over U jV a zygote z ¼

ðg; hÞ produces the recombinant gametes gU hV
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and hU gV with equal probabilities rðU jV Þ=2: The
probabilities rðU jV Þ form the linkage distri-

bution. This distribution must be consistent with
independent segregation of homologous chro-
mosomes in meiosis, see Lyubich, (1992, Section
6.1) for an adequate mathematical formulation.
The subset of loci which belong to the same
chromosome is called a linkage group. The
linkage groups form the chromosomal partition

of the loci set L.
The set Z of all zygotes provided with a

linkage distribution r ¼ frðU=V Þg is what we
call the genotypical structure of the population.
A phenotypical structure (Z;F;j) is a super-
structure over (Z; r). In what follows the
probabilities rðU jV Þ do not explicitly enter
the picture before the evolutionary equations
appear (Section 6). However, the presence/
absence of linkage is significant since without
this information the zygote genotypes are not
well determined.
Some multilocus phenotypical structures are

in a sense the products of structures with lesser
numbers of loci. Consider a partition L1jL2 of
the loci set L and assume that three phenotypical
structures ðZL1 ; F1; j1Þ; ðZL2 ; F2; j2Þ and
ðZ;F;jÞ are given for the loci sets L1; L2 and
L, respectively. Consider the Cartesian product
F1 � F2 of the phenotype sets i.e. the set of all
ordered pairs ( f1; f2) where f1AF1 and f2AF2:
Let there exist a bijective mapping y : F1 �
F2-F such that

jðg; hÞ ¼ yðj1ðgL1 ; hL1Þ;j2ðgL2 ; hL2ÞÞ

for all zygotes z ¼ ðg; hÞ: Then we say that the
phenotypical structure ðZ;F;jÞ is decomposable
with the constituents ðZL1 ; F1; j1Þ and
ðZL2 ; F2; j2Þ: This definition means that the
classes of zygotes relating to the whole loci set
L are in a 1–1 correspondence with the pairs of
classes relating to L1 and L2: Hence, n ¼ n1n2
where n; n1; n2 are the number of classes for
L;L1;L2 respectively.
If F ¼ F1 � F2 and y is the identity mapping

then (Z;F;j) is called the direct product of
ðZL1 ; F1; j1Þ and ðZL2 ; F2; j2Þ;

ðZ;F;jÞ ¼ ðZL1 ;F1;j1Þ � ðZL2 ;F2;j2Þ:
Any decomposable phenotypical structure is iso-
morphic to a direct product.
The decomposability with more than two

constituents can be defined quite similarly. We
say that the phenotypical structure is completely
decomposable if it is decomposable with one-
locus constituents. In this case the GP-map can
be treated as a result of independently acting
one-locus GP-maps.
A completely decomposable phenotypical

structure whose constituents are determined by
some dominance graphs can be called multilocus
dominant. For instance, so is the multilocus
Mendelian dominant structure, the direct pro-
duct of one-locus ones.
Below in this section we focus on the two-

locus diallele situation where the above intro-
duced general concepts become especially clear.
Let the alleles be A and a at the first locus and B
and b at the second one. Then the two-locus
genotypes are the homozygotes

AABB; AAbb; aaBB; aabb ð1Þ

and the simple heterozygotes

AaBB;Aabb;AABb; aaBb ð2Þ

and, finally, the double heterozygotes

AaBb;AabB: ð3Þ

If the loci are unlinked then the double hetero-
zygote genotypes coincide and then the total
number of genotypes is equal to nine instead of
ten in the case of linked loci.
Obviously, the neutral two-locus phenotypical

structure is decomposable with neutral one-locus
constituents.

The separative two-locus structure with unlinked
loci is decomposable with separative one-locus
constituents, according to the decomposition
9¼ 3� 3. For instance, the class fAaBbg corre-
sponds to the pair of classes fAag and fBbg:

The separative structure with linked loci is
indecomposable, otherwise, a one-locus constitu-
ent would consist of at least 5 classes. Indeed,
there are no decompositions of the number 10
other than 10¼ 2� 5¼ 1� 10. However, the
maximal number of one-locus classes with two
alleles is 3o5.
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We see that the decomposability depends on
linkage.
A realistic example we describe in our terms is

the MNS blood group system. According to Li
(1976, Chapter 5, Section 11) there are the alleles
M, N at the first locus and S, s at the second one,
the loci are linked. With four antisera against
M, N, S and s one can detect all genotypical
differences except for the double heterozygotes.
Thus, the phenotypical structure corresponding
to this experimental situation consists of 9
classes: fMMSSg; fMMSsg; fMMssg; fNNSSg;
fNNSsg; fNNssg; fMNSSg; fMNssg; fMNSs;
MNsSg: This structure is decomposable with
separative constituents but it is not separative
per se.
If there are three antisera against M, N, S but

the anti-s is not available, then the phenotypes
are fMMSS;MMSsg; fMMssg; fNNSS;NNSsg;
fNNssg; fMNSS;MNSs;MNsSg; fMNssg: This
structure is decomposable with the separative
constituent at the first locus and the Mendelian
dominant at the second one (according to the
decomposition 6¼ 3� 2). Thus, the structure is
two-locus dominant.
If a phenotypical structure is decomposable

with respect to a partition L ¼ L1jL2; we say that
there is no descriptive epistasis between the loci
groups L1 and L2. The completely decomposable
phenotypical structure can be considered as a
descriptively nonepistatic one. In Section 5 we
introduce a quantitative (metrical) characteriza-
tion of the epistasis. See Wagner et al. (1998) for
a different approach to this problem.
The position effect can also be treated in terms

of decomposability. The absence of the position
effectmeans that the allele transpositions at each
locus do not affect the phenotypes. In this case
the phenotype only depends on the set of genes
situated in the homologous chromosomes irre-
spective of how the genes are distributed between
the chromosomes. For instance, in the separative
two-locus structure there is no position effect if
the loci are unlinked loci in contrast to the case
of linked loci.

Proposition 1. There is no position effect in a
phenotypical structure if and only if it is an
enlargement of the decomposable phenotypical

structure with one-locus separative constituents.
Proof. The ‘‘if ’’ part immediately follows from
the definitions. Now let (Z;F;j) be a direct
product of one-locus separative structures and
let (Z;C;c) be a phenotypical structure with no
position effect. Then, if jðg; hÞ ¼ jðg0; h0Þ then
the one-locus subgametes gi2hi and g0i2h0i
coincide up to the transpositions gi2hi; g0i2h0i
ð1piplÞ.
The latter do not change the phenotypes

cðg; hÞ and cðg0; h0Þ; respectively. Hence, cðg; hÞ ¼
cðg0; h0Þ: We have proved that cðzÞ is a function
of jðzÞ: &

It is interesting that a phenotypical structure
with no position effect can be descriptively
epistatic (indecomposable). An example of
this is the two-locus numerical phenotypical
structure

fAABB;AAbb; aaBB; aabbg;

fAaBB;Aabb;AABb; aaBbg; fAaBb;AabBg: ð4Þ

If it were decomposable then one of the
constituents would be neutral while the other is
separative (according to the only decomposition
3¼ 1� 3). This contradicts eqn (4).
Returning to the multilocus theory we general-

ize the notion of the graph of phenotypical
heredity. Let (Z;F;j) be a phenotypical struc-
ture. For some different gametes g, h we write
h-g if g is produced by a zygote z ¼ ðw; gÞ of the
same phenotype as the homozygote (h, h). More
formally, there is a ðw; gÞ and a crossing-over
U jV such that g ¼ wUgV and jðw; gÞ ¼ jðh; hÞ: It
remains to identify the gametes with the vertices
of a directed graph G where the arcs h-g are as
above.
A phenotypical structure (Z;F;j) is called

acyclic if its graph G is acyclic. In particular,
a phenotypical structure is acyclic if the

homozygous phenotypes are specific (the case of
the empty graph). A fortiori, all separative
phenotypical structures are acyclic. In contrast,
any neutral phenotypical structure is not
acyclic.
Note that if a phenotypical structure is acyclic

then the homozygous phenotypes are pairwise

distinct. Indeed, if jðg; gÞ ¼ jðh; hÞ then h-g
and g-h by definition, so that a cycle of length 2
appears.
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It is easy to see that any decomposable pheno-
typical structure with acyclic constituents is acyclic.

4. Fitness Functions

Denote by R+ the set of nonnegative real
numbers. Let Z be the set of all zygotes in a
multilocus multiallele population. A fitness
function l of the population is a mapping
Z-Rþ: The value lðzÞ is the fitness of the
zygote z. At least one of these values must be
different from zero. We suppose that given a
phenotypical structure (Z;F;j), the fitness l(z)
only depends on phenotype jðzÞ: In other words,

lðzÞ ¼ LðjðzÞÞ; ð5Þ

where L is a mapping from F into R+. For
example, in the case of diallele Mendelian domi-
nance we have lðAAÞ ¼ lðAaÞ ¼ LðfAA;AagÞ
and lðaaÞ ¼ LðfaagÞ:
In the neutral phenotypical structure all

zygotes have the same fitness, lðzÞ ¼ const.
For any phenotype f the value Lð f Þ is called

its fitness. Let n be the total number of
phenotypes. The n-tuple ðLð f Þ : fAFÞ is called
the phenotype fitness vector. The phenotype
fitness space is the set of all fitness vectors, i.e.
it is the set Rn

þ of all non-zero n-tuples with
nonnegative components.
The fitness of the phenotypes is a substantial

factor in the evolutionary equations we consider
below. These equations are invariant with
respect to the multiplication of all values lðzÞ
by the same constant. This allows us to identify
all proportional fitness vectors. One of them can
be chosen as a representative of all of them. A
normalization, say SfLð f Þ : fAFg ¼ 1; is a way
to specify a standard representative.
Under assumption (5) the phenotypical struc-

ture (Z;F;j) is called l-compatible and also l
is called (Z;F;j)-compatible. For instance, any
fitness function is compatible with the separative
phenotypical structure but the latter is too fine,
in general. The largest l-compatible phenotypi-
cal structure is such that the zygotes z and z are
of the same phenotype if and only if lðzÞ ¼ lðzÞ:
This phenotypical structure is uniquely deter-
mined by the fitness function which allows us to
say that the largest l-compatible phenotypical
structure is l-determined. For example, at a
single locus with alleles A and a such that
lðAAÞ ¼ lðAaÞalðaaÞ the Mendelian dominant
phenotypical structure is l-determined. How-
ever, if lðAAÞ ¼ lðAaÞ ¼ lðaaÞ then the l-deter-
mined phenotypical structure is neutral.
The fitness function plays a subordinate role

with respect to a phenotypical structure. More-
over, the exact (or well approximated) fitness
function is usually unknown (Wright, 1968;
Lewontin, 1974). In this situation it is especially
important to develop some structural ap-
proaches (cf. Lyubich et al., 2001; Stadler et al.,
2001). Below we follow this way.
As before, let the loci be 1,y, l. Given a

function P : Rn
þ-Rþ; a multilocus fitness func-

tion l is called P-decomposed if

lðzÞ ¼ Pðlð1Þðz1Þ;y; lðlÞðzlÞÞ; ð6Þ

where zi is the genotype of z at the i-th locus
provided with a fitness function lðiÞ; 1pipl: The
most popular examples are: the additive selection

lðzÞ ¼ lð1Þðz1Þ þ?þ lðlÞðzlÞ; ð7Þ

and the multiplicative selection

lðzÞ ¼ lð1Þðz1ÞylðlÞðzlÞ: ð8Þ

The latter is a particular case of the monomial
selection which we introduce as

lðzÞ ¼ ½lð1Þðz1Þ�n1y½lðlÞðzlÞ�nl ; ð9Þ

where nk are positive integers.
In Karlin (1979) a ‘‘mixture’’ of additive and

multiplicative selection was introduced and called
the generalized non-epistatic selection. This is

lðzÞ ¼
X
UCL

cðUÞ
Y
kAU

lðkÞðzkÞ; ð10Þ

where c(U) are some nonnegative coefficients, at
least one of which is positive. For cðUÞ ¼ djU j;1

or cðUÞ ¼ dU ;L formula (10) turns into the
additive or multiplicative selection respectively.
(Here we use the standard Kronecker’s symbol:
dx;y ¼ 0 for xay; otherwise, dx;y ¼ 1:)

Proposition 2. Let a l-locus phenotypical struc-
ture be descriptively non-epistatic. Suppose that

a fitness function lðzÞ is P-decomposed where
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lð1Þðz1Þ; y; lðlÞðzlÞ are compatible with the corre-
sponding one-locus constituents. Then this struc-

ture is l-compatible.

Thus, our structural definition of non-epistasis
is consistent with the quantitative version (6), in
particular, with eqns (7)–(10).

Proof. Suppose that two zygotes z and z’ are of
the same phenotype in the given descriptively
non-epistatic (� completely decomposable) phe-
notypical structure:

jkðzkÞ ¼ jkðz
0
kÞ; 1pkpl;

where jk are the one-locus GP-maps. Since the
one-locus constituents are l(k)-compatible, we
have

lðkÞðzkÞ ¼ lðkÞðz0kÞ; 1pkpl:

Hence, lðzÞ ¼ lðz’Þ by eqn (6). &

In particular, the additive selection is compa-
tible with any descriptively non-epistatic pheno-
typical structure if its summands are compatible
with the one-locus constituents. Traditionally,
the additive selection is a standard pattern for
the ‘‘quantitative non-epistasis’’ expressed in
terms of fitness function, see e.g. Moran (1965,
Section 9). Here we propose to measure the

epistasis by the Euclidean distance of a fitness
vector from the manifold of additive fitness
vectors. We call this the epistatic distance. This
distance is automatically zero for the additive
selection. All fitness vectors (functions) under
consideration are supposed to be compatible
with an a priori given descriptively non-epistatic
phenotypical structure.
In the next section we explicitly determine the

epistatic distance for any decomposable two-
locus phenotypical structure.
In principle, any P-decomposed fitness func-

tion can be chosen as a pattern for a quantitative
non-epistasis. However, in order to find the
corresponding epistatic distance some difficult
nonlinear problems have to be solved. Never-
theless, the ‘‘multiplicative’’ epistasis distance
can be found in a structurally simple situation,
see Appendix B.
5. The Epistatic Metric

Let us start with the two-locus Mendelian
dominant structure. Let the alleles be A, a and B,
b at the first and at the second locus, respec-
tively. This is the direct product of one-locus
Mendelian dominant structures. For the classes

fAABB;AABb;AaBB;AaBbg;

fAAbb;Aabbg; faaBB; aaBbg; faabbg ð11Þ

the additive fitness values are aþ g; aþ d; bþ g;
bþ d where

a ¼ lð1ÞðAAÞ ¼ lð1ÞðAaÞ; b ¼ lð1ÞðaaÞ

and

g ¼ lð2ÞðBBÞ ¼ lð2ÞðBbÞ; d ¼ lð2ÞðbbÞ:

The whole fitness space corresponding to the
phenotypical structure (11) consists of all non-
negative non-zero 4-dimensional vectors l ¼
ðl1; l2; l3; l4Þ: The manifoldA of additive fitness
vectors is the intersection of R4þ with the additive
subspace ~A the equation of which is

l1 � l2 � l3 þ l4 ¼ 0;

so that ~A is a hyperplane.
The epistatic distance d in the two-locus

Mendelian dominant structure is the Euclidian
distance from lA R4þ to A;

d ¼ distðl;AÞ:

Since AC ~A we have the lower bound

dXdistðk; ~AÞ: ð12Þ

The hyperplane ~A consists of all vectors l
which are orthogonal to the vector n ¼ 1

2
(1, �1,

�1, 1). The latter is normalized, ||n||¼ 1. Hence,

distðk; ~AÞ ¼ jrj;

r � ðk; mÞ ¼ ðl1 � l2 � l3 þ l4Þ; ð13Þ

where (k; m) is the standard inner product. By
the way, the oriented distance r distinguishes
the superadditive selection (r40) from the sub-

additive one (ro0).
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It is easy to prove that inequality (12) turns
into equality, i.e.

d ¼ distðl; ~AÞ; ð14Þ

if the constraints

� 4 minðl1; l4Þpl1 � l2 � l3 þ l4

p4 minðl2; l3Þ ð15Þ

are satisfied.
Let us consider the separative phenotypical

structure corresponding to a pair of unlinked
diallele loci. Here the result turns out to be
more complicated than above, the fitness vectors
are 9-dimensional, say l ¼ ðlkÞ

9
1; where the

components l1;y; l9 are enumerated according
to the list of genotypes (1)–(3) with AabB �
AaBb:
Now the additive subspace ~A is described by

the system of equations

l1 � l2 � l3 þ l4 ¼ 0; l1 � l2 � l5 þ l6 ¼ 0;

l1 � l3 � l7 þ l8 ¼ 0; l1 � l5 � l7 þ l9 ¼ 0:

ð16Þ

Indeed, let the one-locus fitness values be
a1; a2; a3 for AA, aa, Aa, respectively and
b1;b2;b3 for BB, bb, Bb. The additive two-locus
values are l1 ¼ a1 þ b1; l2 ¼ a1 þ b2; l3 ¼ a2 þ
b1; l4 ¼ a2 þ b2; l5 ¼ a3 þ b1; l6 ¼ a3 þ b2; l7 ¼
a1 þ b3; l8 ¼ a2 þ b3; l9 ¼ a3 þ b3:
Let us introduce the oriented distances to

hyperplanes (16), namely,

r1 ¼
1
2
ðl1 � l2 � l3 þ l4Þ;

r2 ¼
1
2
ðl1 � l2 � l5 þ l6Þ

ð17Þ

and

r3 ¼
1
2
ðl1 � l3 � l7 þ l8Þ;

r4 ¼
1
2
ðl1 � l5 � l7 þ l9Þ;

ð18Þ
respectively. By some linear algebra calculations
[see Section Appendix B, part (a)] we obtain

½distðk; ~AÞ�2 ¼ 4
9
½4ðr21 þ r22 þ r23 þ r24Þ

� 4ðr1 þ r4Þðr2 þ r3Þ

þ 2ðr1r4 þ r2r3Þ�: ð19Þ

Both bound (12) and (under some constraints)

equality (14) remain in force but with dðk; ~AÞ
given by eqn (19).
Remarkably, the oriented distance r1 coincides

with the measure EAB introduced inWagner et al.
(1998). According to the latter the quantity r1 ¼
EAB measures the absolute effect of subsequent
substitutions A;a and B;b on the genotypic
values (the fitness values, for instance) at the loci
B and A, respectively. Note that the only homo-
zygous values are accounted in r1 in contrast
to r2; r3; r4:
It is interesting to compare results (19) and

(20). One can try to measure the epistasis in the
two-locus Mendelian dominant structure using
formula (19) for the separative structure but with
the ‘‘dominance conditions’’

l1 ¼ l5 ¼ l7 ¼ l9; l2 ¼ l6; l3 ¼ l8 ð20Þ

corresponding to structure (11). Then eqns (17)
and (18) reduce to r1 ¼ r;r2 ¼ r3 ¼ r4 ¼ 0
where r is defined by eqn (12). By substitution
into eqn (19) we obtain

distðk; ~A Þ ¼ 4
3jrj;

k ¼ ðl1; l2; l3; l4; l1; l2; l1; l3; l1Þ: ð21Þ

According to eqn (20), in the separative structure
the fitness vector k represents the vector (l1; l2;
l3; l4) from the Mendelian dominant structure.
Formula (21) includes the coefficient 4/3 as
opposed to 1 in the ‘‘intrinsic’’ formula (13).
Similarly, the epistatic distance in the direct

product of the one-locus Mendelian dominant
structure and the separative structure appears in
eqn (19) with the additional factor

ffiffiffiffiffiffiffiffi
4=3

p
:

Thus, the value of the epistatic distance

substantially depends on a preexisting pheno-
typical structure. We continue to discuss this
phenomenon in Section Appendix B, part (b).



PHENOTYPICAL SELECTION AND EPISTASIS 633
All the formulas for epistatic distances we
have obtained are some particular cases of a
general formula concerning the direct product of
two arbitrary one-locus multiallele phenotypical
structures. In order to write such a formula we
denote the classes of those one-locus structures
by C

ð1Þ
1 ; :::;Cð1Þ

s and C
ð2Þ
1 ; :::;Cð2Þ

t ; respectively.
Then the classes in their direct product can be
described as the formal products C

ð1Þ
i C

ð2Þ
k ;

1pips; 1pkpt: The total number of them is
n ¼ st: Let lik be the fitness value of the class
C

ð1Þ
i C

ð2Þ
k : Consider the oriented distance

rik ¼ 1
2
ðl11 � l1i � lk1 þ likÞ; ð22Þ

where 2pips; 2pkpt: The corresponding
additive subspace is

~A ¼ flARn : rik ¼ 0; 2pips; 2pkptg: ð23Þ

Theorem 1. The formula

½distðk; ~A Þ�2 ¼

4
n
½ðs � 1Þðt � 1Þ

X
j;l

r2jl � ðs � 1Þ
X

j;l; kal

rjlrjk

� ðt � 1Þ
X

j;l;iaj

rjlril þ
X

j;l;iaj; kal

rjlrik�
ð24Þ

holds.

For the proof see Section 8, part (c).
A remarkable property of formula (24) is that

the structure of its right-hand side is uniquely
determined by the class numbers s and t. For
example, eqn (13) is valid for the direct product
of one-locus numerical structures. Meanwhile, in
this direct product the content of the classes is
different from that in the two-locus Mendelian
dominant structure.

6. The evolutionary Equations under
Phenotypical Selection

We start with the evolutionary equations
determined by an arbitrary given fitness function
lðg; hÞð� lðh; gÞÞ; see Lyubich (1992, eqn 9.5.1).
We adjust these equations to any l-compatible
phenotypical structure.
A state of a population on the gamete level is a
distribution p(g) of probabilities of gametes. The
evolutionary equations yield the state p0ðgÞ for
the offspring generation in terms of the state p(g)
in the parental generation.
For any gamete g we denote by FðgÞ the set

of phenotypes f such that g is a recombinant
gamete for a zygote the phenotype of which is f.
More formally,

FðgÞ ¼

f fAFj(ðw; gÞ;U jV : f ¼ jðw; gÞ; wUgV ¼ gg:

ð25Þ

Then under panmixia

p0ðgÞ ¼
QgðpÞ
W ðpÞ

: ð26Þ

Here

W ð pÞ ¼
X
g;h

lðg; hÞpðgÞpðhÞ ð27Þ

is the mean fitness of the population and

Qgð pÞ ¼
X

fAFðgÞ

Lð f Þ
X

jðg;wÞ¼f

pgw;gpðgÞpðwÞ: ð28Þ

The coefficient

pgw;g ¼
X

gUwV¼g

rðU jV Þ ð29Þ

is the probability for the gamete pair g; w to
produce g by recombination.
The quantity QgðpÞ is the contribution of the

gamete g to the mean fitness W ð pÞ:X
g

QgðpÞ ¼ W ð pÞ; ð30Þ

so that W( p) can be expressed in terms of
phenotypical fitnesses L( f ) as well. The linkage
distribution r(U|V) being fixed, the only para-
meters in the evolutionary eqns (26) are the
phenotypical fitnesses L( f ). However, the dyna-
mical variables p(g) are related to the genotypes.
It is known that, in general, there is no definite

dynamics in terms of phenotypical probabilities
(Lewontin, 1974, Chapter 1; Lyubich, 1992,
Section 1.2).
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7. The Equilibrium Set. The Finiteness Problem

For an equilibrium p we have p0ðgÞ ¼ pðgÞ:
According to eqn (26) p is an equilibrium if and
only if

pðgÞW ðpÞ � Qgð pÞ ¼ 0: ð31Þ

The equilibrium set may be infinite. The classical
example is the Hardy–Weinberg parabola. More
generally, the equilibrium set is infinite for any
selection free population, i.e. for the neutral
phenotypical structure.
Actually, there are a lot of problems in

evolutionary theory, where the finiteness of the
equilibrium set is a needed condition a priori.
For instance, under this condition the number of
equilibria can be evaluated explicitly (Karlin &
Feldman, 1970; Lewontin, 1974; Renaud &
Morton, 1991; Lyubich, 1992). Also, under the
finiteness condition the problem of convergence
to equilibrium can be essentially simplified
(Blackley, 1964; Lyubich, 1992}
A standard ‘‘philosophical’’ opinion is that the

equilibrium set under ‘‘effective’’ selection is finite
‘‘as a rule’’. However, there are only a few exact
statements of this kind for the multilocus multi-
allele populations, in particular, for the additive
or almost additive selection (Kun & Lyubich,
1980; Kun, 1988; Lyubich, 1992, Chapter 9;
Nagylaki et al., 1999). The following result has
been recently established (Lyubich et al., 2001).

Theorem 2. For any acyclic phenotypical struc-
ture the equilibrium set is finite generically in the

phenotype fitness space.

In particular, we have

Corollary 1. If the phenotype of every homozy-
gote is specific (in particular, if the phenotypical

structure is separative) then the equilibrium set is
finite generically.

Corollary 2. For any multilocus phenotypical
structure with acyclic constituents the equilibrium

set is finite generically.

Also in Lyubich & Kirzhner (2002) a theorem of
generic finiteness of the equilibrium set in Karlin’s
model (10) was obtained from Theorem 1.
The following theorem has been proved in
Kirzhner & Lyubich (2000).

Theorem 3. Under monomial (in particular,
multiplicative) selection the equilibrium set is

finite generically.

In all the above-mentioned cases the total

number of equilibria does not exceed 3n�1, where
n is the total number of gamete genotypes in the

population.
On the other hand, the best possible upper

bound for the total number of equilibria cannot
be less than 2n–1 since the latter number is
attained.

Example. At a locus with allele a1;y; am we
consider the phenotypical structure with pheno-
types f1yfm for the homozygotes and with one
more phenotype fmþ1 for all heterozygotes. This
structure is acyclic since the phenotypes of
homozygotes are specific. The compatible fitness
vector is fl1;ylm; lmþ1g: We assume these
fitness values pairwise distinct, so the phenotypi-
cal structure under consideration is l-determined.
Now the equilibrium equations (25) take the

form

lip
2
i þ lmþ1

X
k:kai

pipk ¼ piW ; 1pipm; ð32Þ

where p1;y; pm are the probabilities of the
alleles a1;y; am; respectively.
With I ¼ fi : pia0g the system of eqn (32)

reduces to

lipi þ lmþ1ð1� piÞ ¼ W ; iAI : ð33Þ

Under the normalizing condition Sfpi :
iAIg ¼ 1 the only solution of eqn (33) is

pi ¼
1

li � lmþ1

X
iAI

1

li � lmþ1

 !�1

; iAI : ð34Þ

This is a unique equilibrium with prescribed set I
if all differences li � lmþ1 are of the same sign.
With this property for all i; 1pipm; the
equilibrium set is enumerated by non-empty
subsets of f1;y;mg: Accordingly, the total
number of equilibria is 2m –1 in this case.

We are grateful to the referee who brought the
quantitative epistasis problem to our attention.
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Appendix A

Proofs to Section 5

(a) Here we derive the distance formula (19). It
is convenient to rewrite eqns (16) as

ðk; mkÞ ¼ 0; 1pkp4; ðA:1Þ

where mk are those normalized vectors which are
orthogonal to the corresponding hyperplanes.
Namely,

m1 ¼ 1
2ð1;�1;�1; 1; 0; 0; 0; 0; 0Þ;

m2 ¼ 1
2
ð1;�1; 0; 0;�1; 1; 0; 0; 0Þ;

m3 ¼ 1
2
ð1; 0;�1; 0; 0; 0;�1; 1; 0Þ;

m4 ¼ 1
2
ð1; 0; 0; 0;�1; 0;�1; 0; 1Þ:

Respectively, the oriented distances (17) and (18)
are

rk ¼ ðk; mkÞ; 1pkp4:

Equations (A.1) determine the additive subspace
~ACR9: In order to find the distance from a
vector lAR9 to L we use the orthogonal
decomposition

k ¼
X4
k¼1

xkmk

 !
"x; xA ~A ðA:2Þ

The coefficients xk in eqn (A.2) can be found
from the system of linear equations

X4
k¼1

gikxk ¼ ri; 1pip4; ðA:3Þ

where gik ¼ ðmi; mkÞ are the entries of the Gram
matrix

G ¼
1

4

4 2 2 1

2 4 1 2

2 1 4 2

1 2 2 4

0
BBB@

1
CCCA:
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The inverse matrix is

G�1 ¼
4

9

4 �2 �2 1

�2 4 1 �2

�2 1 4 �2

1 �2 �2 4

0
BBB@

1
CCCA:

Now we can solve eqn (A.3) and find

x1 ¼ 4
9
ð4r1 � 2r2 � 2r3 þ r4Þ

x2 ¼ 4
9ð�2r1 þ 4r2 þ r3 � 2r4Þ

x3 ¼ 4
9ð�2r1 þ r2 þ 4r3 � 2r4Þ

x4 ¼ 4
9
ðr1 � 2r2 � 2r3 þ 4r4Þ

9>>>=
>>>;
: ðA:4Þ

It follows from eqns (A.2) and (A.3) that

½distðl; ~AÞ�2 ¼ jj
X4
k¼1

xknkjj2

¼
X4
i;k¼1

gikxixk ¼
X4
i¼1

xiri:
ðA:5Þ

It remains to insert eqn (A.4) into eqn (A.5) in
order to get eqn (19).
(b) There is a deep reason for the divergence

between the epistatic distances (13) and (21)
which related to the two-locus Mendelian
dominant structure. Formula (13) was obtained
directly in this structure while eqn (21) is the
epistatic distance in the separative structure
specialized by means of eqn (20). Actually, we
have the linear mapping T : R4-R9;

Tðl1; l2; l3; l4Þ

¼ ðl1; l2; l3; l4; l1; l2; l1; l3; l1Þ; ðA:6Þ

which transfers the fitness vectors from the two-
locus Mendelian dominant structure to the
separative one. Obviously, T maps the additive
hyperplane

H ¼ fkAR4 : l1 � l2 � l3 þ l4 ¼ 0g

into the additive subspace ~ACR9: However, T is
not isometric, its action does not preserve the
lengths of vectors and the angles between them.
In particular, for the vector m which is normal-
ized and orthogonal to H; we obtain

Tn ¼ 1
2
ð1;�1;�1; 1; 1;�1; 1;�1; 1Þ:
We see that jjTmjj ¼ 3=2 while jjmjj ¼ 1: More-
over, Tm is not orthogonal to ~A: Indeed, other-
wise, Tm would be a linear combination of
mk; 1pkp4; but this is false. For this reason the
constant c¼ dist(Tm, ~A) could be different from
dist(m,H)¼ 1. They are really different since
c¼ 4/3 according to eqn (21). Note that eqn (21)
can be rewritten in the apparent geometrical
form

distðTk; ~A Þ ¼
4

3
distðk;HÞ; kAR4: ðA:7Þ

(c) Here we prove Theorem 5.1. Before doing
so let us verify eqn (23) for the additive subspace.
First, with

lik ¼ ai þ bk; 1pips; 1pkpt; ðA:8Þ

all equations in eqn (23) are valid. Secondly, this
system of equations for the additive selection is
complete. Indeed, eqn (A.8) defines a linear
mapping Rsþt-Rst with all lik ¼ 0 if and only if
all ai are equal to some a while all bk ¼ 2a:
Hence, the number of independent equations for
the additive subspace is st2ðs þ tÞ þ 1 ¼ ðs �
1Þðt � 1Þ; just the same as in eqn (23).
Now we introduce the vector mikð2pips;

2pkptÞ as the (s�1)� (t�1) matrix with the
entry 1

2
at the northwest corner as well as at the

intersection of the i-th row and the k-th column;
with the entries �1

2
at the intersection of the 1st

row and k-th column as well as of the i-th row
and the 1st column; with the entries 0 at all other
places. Then eqn (22) takes the form

rik ¼ ðk; mikÞ; 2pips; 2pkpt: ðA:9Þ

The Gram matrix of the system fmikg is G ¼
ðgik; jlÞ where

gik; jl ¼ ðmik; mjlÞ ¼ 1
4
ð1þ dijÞð1þ dklÞ: ðA:10Þ

The orthogonal decomposition

k ¼
X
i;k

xikmik

 !
"x; xA ~A ðA:11Þ

yields the system of linear equationsX
i;k

gik; jlxik ¼ rjl ; 2pips; 2pkpt: ðA:12Þ
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(It is suffitient to multiply eqn (A.11) by mjl and
use ðx; mjlÞ ¼ 0:Þ
By eqn (A.10), system eqn (A.12) can be

rewritten as

xjl þ sj þ tl þ s ¼ 4rjl ;

2pips; 2pkpt; ðA:13Þ

where

sj ¼
X

k

xjk; tl ¼
X

i

xil ; s ¼
X
i;k

xik; ðA:14Þ

so that X
j

sj ¼
X

l

tl ¼ s: ðA:15Þ

By summation over all indices in eqn (A.13)
and application of eqns (A.14) and (A.15) we
obtain

s ¼ 4
st

X
j;l

rjl ¼
4
n

X
j;l

rjl : ðA:16Þ

In turn, the summation over l in eqn (A.13)
yields

sj ¼ 4
t

X
l

rjl � s ðA:17Þ

and, similarly, the summation over j yields

tl ¼ 4
s

X
j

rjl � s ðA:18Þ

Finally, xil are determined by eqns (A.13) and
(A.16)–(A.18).
Coming back to eqn (A.11) we obtain

½distðl; *AÞ�2 ¼ 8
X
i;k

xiknik82

¼
X
i;k;j;l

gik;jlxikxjl ¼
X

j;l

xjlrjl

ðA:19Þ

by eqn (A.12). In principle, it remains to
substitute xjl we have found. However,
elementary algebraic machinery is also needed
to obtain the final result eqn (A.15). Let us
omit it.
Appendix B

Epistatic Distance to a Multiplicative Pattern

Consider the two-locus Mendelian dominant
structure (11) but with the multiplicative
fitness values ag; ad;bg; bd instead of additive
ones. The manifold M of multiplicative fitness
vectors is the intersection of R4þ with the
multiplicative manifold ~M the equation of
which is

l1l4 � l2l3 ¼ 0:

This manifold is a quadric in R4; not a linear
subspace. We are going to find the Euclidian
distance of an arbitrary point l ¼ ðm1;m2; m3;m4Þ
to ~M:
Let ek ¼ lk � mk; 1pkp4; where l ¼

ðl1; l2; l3; l4Þ is the closest to l point of ~M:
The vector e ¼ ðe1; e2; e3; e4Þ has to be orthogonal
(normal) to ~M at the point l: Hence, e is
proportional to ðl4;�l3;�l2; l1Þ: We obtain the
following system of equations with unknown
ek; 1pkp4:

ðm1 þ e1Þðm4 þ e4Þ ¼ ðm2 þ e2Þðm3 þ e3Þ ðB:1Þ

m4 þ e4
e1

¼ �
m3 þ e3

e2
¼ �

m2 þ e2
e3

¼
m1 þ e1

e4
: ðB:2Þ

To solve eqns (B.1) and (B.2) we introduce the
common value t of all fractions involved in eqn
(B.2). Then eqn (B.1) reduces to

e1e4 ¼ e2e3 ðB:3Þ

and eqn (B.2) yields the system of linear
equations

e1t� e4 ¼ m4; e4t� e1 ¼ m1;

e2tþ e3 ¼ �m3; e3tþ e2 ¼ �m2:

Then

e1 ¼
m1 þ m4t
t2 � 1

; e2 ¼
m2 � m3t
t2 � 1

;

e3 ¼
m3 � m2t
t2 � 1

; e4 ¼
m4 þ m1t
t2 � 1

ðB:4Þ

with the (non-essential) constraint ta1:
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By substitution into eqn (B.3) we obtain a
quadratic equation

rt2 þ D2tþ r ¼ 0; ðB:5Þ

where the coefficients are

r ¼ m1m4 � m2m3; D2 ¼
X4
k¼1

m2k: ðB:6Þ

Note, that r is the multiplicative analog of the
oriented distance r we have in the additive
situation, cf. eqn (13).
The multiplicative epistatic distance in ques-

tion is determined by the formula

½distðl; ~MÞ�2 ¼
X4
k¼1

e2k ¼
D2t2 þ 4rtþ D2

ðt2 � 1Þ2
ðB:7Þ

by eqn (B.4). Using eqn (B.5) one can subse-
quently eliminate t2 from eqn (B.7) obtaining

½distðl; ~MÞ�2 ¼ �rt�1; ðB:8Þ
where t is a root of eqn (B.5), i.e.

t ¼ �
D27

ffiffiffiffi
D

p
2r

; D ¼ D4 � 4r2: ðB:9Þ

It is follows from eqn (B.6) that

D ¼ ½ðm1 � m4Þ
2 þ ðm2 þ m3Þ

2�

½ðm1 þ m4Þ
2 þ ðm2 � m3Þ

20:
ðB:10Þ

By eqn (B.9) DoD4 and the signs of t and r are
opposite. This fact is consistent with eqn (B.8)
where the left-hand side has to be positive. As a
result,

½distðl; ~MÞ�2 ¼ jrt�1j ¼
2r2

D2 þ
ffiffiffiffi
D

p : ðB:11Þ

The choice of sign in eqn (B.9) provides the
smallest value eqn (B.11).
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