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A mathematical approach to interactions between genotypes and phenotypes in a multilocus
multiallele population is developed. No a priori information on a fitness function is required.
In particular, some structural definitions of epistasis and the position effect are given in terms
of a decomposition of phenotypical structures. On this base a distance to the additive non-
epistasis is introduced and an explicit formula for it is obtained. A class of phenotypical
structures including multilocus dominance is described in terms of directed graphs. The
evolutionary equations are adjusted to a fitness function compatible with a phenotypical
structure. Some results on the finiteness of the equilibria set are presented.
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1. General Notions

The concepts of genotype and phenotype are
both fundamental in theoretical population
genetics. Moreover, as it was emphasized by
Lewontin (1974, Chapter 1), the phenotypical
variables must be substantially taken into
account in the dynamical theory of evolution.
In Yablokov (1986) the phenetics is developed
in a purely biological context. In the present
communication we discuss an adequate mathe-
matical design for the phenotypical selection and
consider some related evolutionary problems.
The most complicated mathematical proofs of
some statements we quote can be found in
Lyubich et al. (2001).

Let Z be the set of all zygote genotypes
(zygotes, for short) in a multilocus multiallele
population. A classical principle states that the
phenotypes of individuals are determined by their
genotypes (up to a statistical deviation we ignore

E-mail address: lyubich@techunix.technion.ac.il
(Y. Lyubich).

0022-5193/03/$35.00

here). Thus, there is a set @ of phenotypes and
a genotype—phenotype mapping, (GP-map) ¢ :
Z — @, so that for any zygote ze€ Z its phenotype
is @(z)ed. We call the triple (Z,®,¢) the
phenotypical structure of the population.

Given a phenotypical structure (Z, &, ¢) and
a phenotype f € @, the set of all z with phenotype
fis called a phenotypical class. The set Z is the
union of pairwise distinct phenotypical classes
which form the phenotypical partition of Z. Later
on we do not distinguish phenotypical structures
with the same partition, i.e. isomorphic in this
sense.

Any partition of Z determines the phenotypi-
cal structure for which @ is the set of classes
of the partition. Then for every zygote z the
phenotype ¢(z) is the class containing z. This is
an universal way of obtaining all phenotypical
structures up to isomorphism.

Note that a similar abstract scheme is applic-
able to modern genomics with the DNA
sequences as genotypes and the secondary
RNA structures or the corresponding proteins
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as phenotypes (cf. Wright, 1968; Schuster et al.,
1994; Fontana & Shuster, 1998).

Let (Z,®,¢) and (Z, ¥, {) be two phenotypi-
cal structures with the same zygote set Z. We say
that (Z, W, y) is larger than (Z, &, @) or, equiva-
lently, (Z, ®, ¢) is finer than (Z, ¥V, y), if every
(Z, W, )-class is the union of some (Z, P, ¢)-
classes. In terms of GP-maps this means that
there exists a mapping 6@ — ¥ such that y(z) =
0(p(2),zeZ.

In the simplest situation all zygotes are of the
same phenotype. We call such a phenotypical
structure neutral. This structure is the largest
one, i.e. this is the enlargement of every
phenotypical structure with the same Z.

In the opposite situation the phenotypes of
distinct zygotes are distinct. We call such a
phenotypical structure separative. This structure
is the finest one, i.e. this is the refinement of
every phenotypical structure with the same Z.

2. One-locus Phenotypical Structures

Consider a diallele locus with alleles 4 and a.
There are three zygotes AA4, aa, Aa=aA and five
phenotypical structures: (1) neutral: the only
class is {AA, aa, Aa}; (2) separative: the classes
are: {AA}, {aa}, {Aa}; (3) numerical: {AA, aa},
{Aa} where the phenotypes can be identified with
the numbers 1 or 2 of different alleles; (4)
Mendelian dominant. {AA, Aa}, {aa} or {AA},
{aa, Aa}.

In general, the alleles at a locus are ay, ..., a,,
where m>2. Then the zygotes are a;ar = aja;.
Thus, the number of zygote genotypes is mi(m +
1)/2, namely, there are m homozygotes a;a; and
m(m — 1)/2 heterozygotes a;ax i<k. It is clear
that the total number of phenotypical structures
rapidly increases with the growth of m. Yet the
number of phenotypical structures with just two
phenotypes is equal to

m(m+1) |
2 T -1

See Cotterman (1955) and Bennet (1957) for
more information.

Fortunately, the most interesting phenotypical
structures are rather special. In particular, some
classical one-locus phenotypical structures are
determined by dominance. We will describe this

phenomenon in terms of a directed graph (the
dominance graph) with vertices ay, ..., a, and
arcs a; — ar(i #k) meaning “‘a; dominates @;”, i.e.
the phenotypes of the heterozygote «; a; and the
homozygote a; a; coincide. Let the homozygous
phenotypes be pairwise distinct. Then the
dominance graph turns out to be antisymmetric,
i.e. a;—ar is incompatible with gy—a;. In
addition, if some «; and a, are codominant
(i.e. a; does not dominate a, and a, does not
dominate a;) then there are no arcs between «;
and a; in both directions. The completely
codominant situation is just the separative
phenotypical structure.

For example, at the locus controlling the MN
blood group system the genotypes MM, NN,
MN are recognized by two antisera: anti-M and
anti-N. In absence of anti-N the separative
phenotypical structure effectively turns into the
Mendelian dominant {MM,MN}, {NN}. The
graph for the latter is M — N. This observed
phenotypical structure is larger than the hidden
one which is observed in the presence of both
antisera.

For the classical blood group system with
three alleles 4, B, O, the dominance graph is
A— O« B, in particular, A and B are codomi-
nant. The corresponding phenotypical classes
are {00}, {44, A0}, {BB, BO}, {AB}.

In fact, it is known that the allele A is a family
of several alleles, for example, A; and A4,, where
Ay dominates 4, (Li, 1976, Chapter 5, Section
10). The corresponding dominance graph is

\T/l 7A2
0<—8B

The phenotypes are {OO}, {AA;, AA,,
A0}, {A2A,, A0}, {BB, BO}, {A,B}, {A:B}.
By enlargement {OO}, {A;A;, A{A,, A0,
A2A2, AzO}, {BB, BO}, {AIB, AzB} and
identification A;=A,(= A) we return to the
initial system.

Antisymmetry is a characteristic property of
dominance graphs. Indeed, we can start with
any directed antisymmetric graph D with vertices
ap, ..., 4, and then we can recover the phenoty-
pical structure the dominance graph of which
is D. Namely, we attribute some pairwise distinct
phenotypes f; to the homozygotes a;a; 1<i<m.
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Then the same f; becomes the phenotype of the
heterozygote a;a; such that a;—a; in D. (There
is no collision since D is antisymmetric.) In
absence of arcs between «; and a, the hetero-
zygote a;a; gets a specific phenotype fir = fri.
(“Specific” means ‘‘different from all other
phenotypes™.)

The extreme situation arises if the graph D has
no arcs at all (the empty graph). The correspond-
ing phenotypical structure is separative.

For a directed graph D antisymmetry means
that there are no oriented cycles of length 2 in D.
If there are no oriented cycles at all, the graph
is called acyclic, see Harary et al. (1965). In the
following example an antisymmetric graph is not
acyclic:

1

O\

> a

Actually, this is a cycle of length 3. Here we
have a non-standard situation: ¢; dominates a,
and a, dominates a; and, finally, a3 dominates
a;. The corresponding phenotypical structure is
lajar, a1ax}, {aran, arasy, {azas, azay .

Obviously, the empty graph is acyclic. All the
above-mentioned concrete dominance graphs
are acyclic.

Actually, a directed (not necessary antisym-
metric) graph G can be associated with an
arbitrary phenotypical structure (Z,®, ). Its
vertices are day, ..., d,, as before, and
ai—ai(i#k) if and only if there exists a; such
that the phenotypes of zygotes aa; and ajay
coincide, i.e. @(ajar) = ¢@(a;a;). In the case of
dominance a; = a;, therefore, G = D. For exam-
ple, A <> a for the neutral diallele structure while
A — a or a » A for the diallele Mendelian
dominant structure. For both separative and
numerical structures the graphs are empty. It
immediately follows from the above definition
that for any number m of alleles the graph G is
empty if and only if the homozygous phenotypes
are specific. By the way, we see that the same
graph can correspond to more than one pheno-
typical structure.

In general, the graph G describes those
interactions between alleles which are immanent
for the phenotypical structure. We call G the
graph of phenotypical heredity. Two phenotypical

structures with the same graph G should be
determined by some additional factors other
than the above-mentioned interactions.

We conclude this section with one more
illustrative example. Consider a locus with three
alleles a;, a,, a;. The graph of the phenotypical
structure

lajar, aaz}, {aas}, {a3a3}, {aiar, aya3}

IS ay < a; — a3. This is also the dominance graph
coming from the phenotypical structure where @,
dominates both @, and a3 but a, and az are
codominant so, the classes are

{arar, aya, a1a3}, {arar}, {azasy, {aras}.

An interpretation of the first phenotypical
structure is: aja, and a;a; are lethal while a,a,
and a»as survive.

3. Multilocus Phenotypical Structures

We use the following convenient mathematical
description of multilocus genotypes (cf. Lyubich,
1992, Section 6.1). Let L = {1, ..., [} be a set of
autosomal loci with alleles a;, at the i-th locus,
1<i<!, 1<k<m;, m;=2. The gamete genotypes
(gametes, for short) are commutative combina-
tions of the form g = ayx,, ..., ax,. Every pair of
gametes (g, 1) determines a zygote z. Conversely,
for any zygote z the corresponding pair (g, &) is
determined up to permutations of homologous
chromosome. However, we will write z = (g, /)
for simplicity. In particular, the homozygotes
are (h, h).

For each subset U <L and for any gamete ¢
the subgamete gy is the combination of those
genes from ¢ which are situated in U. For any
UcLand V =L\ Uwehave gygy =g (uptoa
reordering of the combined genes). The parti-
tions U]V correspond to all formally possible
crossing-overs. The probability of a partition
U|V is denoted by r(U|V), so that

HU)=0, Y rUIV) = 1.
u\v

(In real populations most of the crossing-overs
have very small probabilities.)

Under the crossing-over U|V a zygote z =
(g,h) produces the recombinant gametes gyhy
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and hygy with equal probabilities r(U|V')/2. The
probabilities #(U|V) form the linkage distri-
bution. This distribution must be consistent with
independent segregation of homologous chro-
mosomes in meiosis, see Lyubich, (1992, Section
6.1) for an adequate mathematical formulation.
The subset of loci which belong to the same
chromosome is called a [linkage group. The
linkage groups form the chromosomal partition
of the loci set L.

The set Z of all zygotes provided with a
linkage distribution r = {r(U/V)} is what we
call the genotypical structure of the population.
A phenotypical structure (Z,®, @) is a super-
structure over (Z,r). In what follows the
probabilities r(U|V) do not explicitly enter
the picture before the evolutionary equations
appear (Section 6). However, the presence/
absence of linkage is significant since without
this information the zygote genotypes are not
well determined.

Some multilocus phenotypical structures are
in a sense the products of structures with lesser
numbers of loci. Consider a partition L;|L, of
the loci set L and assume that three phenotypical
structures (Zr,, @1, ¢,), (Zr,, P2, ¢,) and
(Z,d, @) are given for the loci sets L;, L, and
L, respectively. Consider the Cartesian product
@ x &, of the phenotype sets i.e. the set of all
ordered pairs (fi,f>) where fie®; and f; e ®,.
Let there exist a bijective mapping 0: @ X
&, — @ such that

©(g,h) = 0(p(gr,, hr,), P2(g1,, h1,))

for all zygotes z = (¢,h). Then we say that the
phenotypical structure (Z, @, ) is decomposable
with  the  constituents (Zp,, 1, ¢,) and
(Zr,, P2, ¢,). This definition means that the
classes of zygotes relating to the whole loci set
L are in a 1-1 correspondence with the pairs of
classes relating to L; and L,. Hence, n = nin;
where n,n;,n, are the number of classes for
L, Ly, L, respectively.

If ® = &; x @, and 0 is the identity mapping
then (Z,®,¢) is called the direct product of
(ZLl, 451, (pl) and (ZLp (I)z, (02)9

(Z,D,0) = (Z1,, D1, 0)) X (Z1,, D2, ¢,).

Any decomposable phenotypical structure is iso-
morphic to a direct product.

The decomposability with more than two
constituents can be defined quite similarly. We
say that the phenotypical structure is completely
decomposable if it is decomposable with one-
locus constituents. In this case the GP-map can
be treated as a result of independently acting
one-locus GP-maps.

A completely decomposable phenotypical
structure whose constituents are determined by
some dominance graphs can be called multilocus
dominant. For instance, so is the multilocus
Mendelian dominant structure, the direct pro-
duct of one-locus ones.

Below in this section we focus on the two-
locus diallele situation where the above intro-
duced general concepts become especially clear.
Let the alleles be 4 and « at the first locus and B
and b at the second one. Then the two-locus
genotypes are the homozygotes

AABB, AAbb, aaBB, aabb (1)
and the simple heterozygotes
AaBB, Aabb, AABb, aa Bb 2)
and, finally, the double heterozygotes
AaBb, AabB. 3)

If the loci are unlinked then the double hetero-
zygote genotypes coincide and then the total
number of genotypes is equal to nine instead of
ten in the case of linked loci.

Obviously, the neutral two-locus phenotypical
structure is decomposable with neutral one-locus
constituents.

The separative two-locus structure with unlinked
loci is decomposable with separative one-locus
constituents, according to the decomposition
9 =3 x 3. For instance, the class {4aBb} corre-
sponds to the pair of classes {Aa} and {Bb}.

The separative structure with linked loci is
indecomposable, otherwise, a one-locus constitu-
ent would consist of at least 5 classes. Indeed,
there are no decompositions of the number 10
other than 10=2x5=1x 10. However, the
maximal number of one-locus classes with two
alleles is 3<5.
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We see that the decomposability depends on
linkage.

A realistic example we describe in our terms is
the MNS blood group system. According to Li
(1976, Chapter 5, Section 11) there are the alleles
M, N at the first locus and S, s at the second one,
the loci are linked. With four antisera against
M, N, S and s one can detect all genotypical
differences except for the double heterozygotes.
Thus, the phenotypical structure corresponding
to this experimental situation consists of 9
classes: {MMSS}, {MMSs}, {MMss}, {NNSS},
{NNSs}, {NNss}, {MNSS}, {MNss}, {MNSs,
MNsS}. This structure is decomposable with
separative constituents but it is not separative
per se.

If there are three antisera against M, N, S but
the anti-s is not available, then the phenotypes
are {MMSS, MMSs}, {MMss}, {NNSS, NNSs},
{NNss}, {MNSS, MNSs, MNsS}, {MNss}. This
structure is decomposable with the separative
constituent at the first locus and the Mendelian
dominant at the second one (according to the
decomposition 6 =3 x 2). Thus, the structure is
two-locus dominant.

If a phenotypical structure is decomposable
with respect to a partition L = L;|L,, we say that
there is no descriptive epistasis between the loci
groups L, and L,. The completely decomposable
phenotypical structure can be considered as a
descriptively nomepistatic one. In Section 5 we
introduce a quantitative (metrical) characteriza-
tion of the epistasis. See Wagner et al. (1998) for
a different approach to this problem.

The position effect can also be treated in terms
of decomposability. The absence of the position
effect means that the allele transpositions at each
locus do not affect the phenotypes. In this case
the phenotype only depends on the set of genes
situated in the homologous chromosomes irre-
spective of how the genes are distributed between
the chromosomes. For instance, in the separative
two-locus structure there is no position effect if
the loci are unlinked loci in contrast to the case
of linked loci.

Proposition 1. There is no position effect in a
phenotypical structure if and only if it is an
enlargement of the decomposable phenotypical
structure with one-locus separative constituents.

Proof. The “if” part immediately follows from
the definitions. Now let (Z,®, ) be a direct
product of one-locus separative structures and
let (Z, ¥, y) be a phenotypical structure with no
position effect. Then, if ¢(g,n) = @(¢’, ') then
the one-locus subgametes g;<>h; and ¢,/
coincide up to the transpositions g; < h;, g; < I,
(I1<i<l).

The latter do not change the phenotypes
W(g,h) and y(¢', 1), respectively. Hence, Y/(g, h) =
(g, ). We have proved that y(z) is a function
of p(z). O

It is interesting that a phenotypical structure
with no position effect can be descriptively
epistatic (indecomposable). An example of
this is the two-locus numerical phenotypical
structure

{AABB, AAbb,aaBB, aabb},

{AaBB, Aabb, AABb,aaBb},{AaBb, AabB}. (4)

If it were decomposable then one of the
constituents would be neutral while the other is
separative (according to the only decomposition
3 =1 x 3). This contradicts eqn (4).

Returning to the multilocus theory we general-
ize the notion of the graph of phenotypical
heredity. Let (Z,®, ) be a phenotypical struc-
ture. For some different gametes g, # we write
h— g if g is produced by a zygote { = (y,y) of the
same phenotype as the homozygote (4, ). More
formally, there is a (y,7) and a crossing-over
U|V such that g = yyy, and o(y,7) = @(h, h). It
remains to identify the gametes with the vertices
of a directed graph G where the arcs 11— ¢ are as
above.

A phenotypical structure (Z,®,p) is called
acyclic if its graph G is acyclic. In particular,
a phenotypical structure is acyclic if the
homozygous phenotypes are specific (the case of
the empty graph). A fortiori, all separative
phenotypical structures are acyclic. In contrast,
any neutral phenotypical structure is not
acyclic.

Note that if a phenotypical structure is acyclic
then the homozygous phenotypes are pairwise
distinct. Indeed, if ¢(g,9) = @(h,h) then h—g
and g — & by definition, so that a cycle of length 2
appears.
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It is easy to see that any decomposable pheno-
typical structure with acyclic constituents is acyclic.

4. Fitness Functions

Denote by R, the set of nonnegative real
numbers. Let Z be the set of all zygotes in a
multilocus multiallele population. A fitness
function A of the population is a mapping
Z—R,. The value A(z) is the fitness of the
zygote z. At least one of these values must be
different from zero. We suppose that given a
phenotypical structure (Z,®, @), the fitness Az)
only depends on phenotype ¢(z). In other words,

Mz) = A(2)), (5

where A is a mapping from @ into R,. For
example, in the case of diallele Mendelian domi-
nance we have A(AA) = A(Aa) = A({AA, Aa})
and Alaa) = A({aa}).

In the neutral phenotypical structure all
zygotes have the same fitness, A(z) = const.

For any phenotype f the value A(f) is called
its fitness. Let n be the total number of
phenotypes. The n-tuple (A(f) : fe®) is called
the phenotype fitness vector. The phenotype
fitness space is the set of all fitness vectors, i.e.
it is the set R’} of all non-zero n-tuples with
nonnegative components.

The fitness of the phenotypes is a substantial
factor in the evolutionary equations we consider
below. These equations are invariant with
respect to the multiplication of all values A(z)
by the same constant. This allows us to identify
all proportional fitness vectors. One of them can
be chosen as a representative of all of them. A
normalization, say 2{A(f):fe®} =1, is a way
to specify a standard representative.

Under assumption (5) the phenotypical struc-
ture (Z, @, @) is called A-compatible and also A
is called (Z, @, ¢p)-compatible. For instance, any
fitness function is compatible with the separative
phenotypical structure but the latter is too fine,
in general. The largest A-compatible phenotypi-
cal structure is such that the zygotes z and  are
of the same phenotype if and only if A(z) = A(0).
This phenotypical structure is uniquely deter-
mined by the fitness function which allows us to
say that the largest A-compatible phenotypical
structure is A-determined. For example, at a

single locus with alleles 4 and a such that
MAA) = M(Aa)+# AMaa) the Mendelian dominant
phenotypical structure is A-determined. How-
ever, if A(AA) = AM(Aa) = /(aa) then the A-deter-
mined phenotypical structure is neutral.

The fitness function plays a subordinate role
with respect to a phenotypical structure. More-
over, the exact (or well approximated) fitness
function is usually unknown (Wright, 1968;
Lewontin, 1974). In this situation it is especially
important to develop some structural ap-
proaches (cf. Lyubich et al., 2001; Stadler et al.,
2001). Below we follow this way.

As before, let the loci be 1,..., /. Given a
function P : R" —»R,, a multilocus fitness func-
tion / is called P-decomposed if

Wz) = POz, ..., 20(z)), (6)

where z; is the genotype of z at the i-th locus
provided with a fitness function 2?9, 1<i</. The
most popular examples are: the additive selection

Mz) =20 + -+ 202, (7)
and the multiplicative selection
2z) = 2V(z))... 20z, )

The latter is a particular case of the monomial
selection which we introduce as

wz) = PO ) 9)

where v, are positive integers.

In Karlin (1979) a “mixture” of additive and
multiplicative selection was introduced and called
the generalized non-epistatic selection. This is

W)=« [] P, a0

UcL keU

where ¢(U) are some nonnegative coefficients, at
least one of which is positive. For ¢(U) = oy
or ¢(U)=90yr formula (10) turns into the
additive or multiplicative selection respectively.
(Here we use the standard Kronecker’s symbol:
Oxy = 0 for x#y, otherwise, 0., = 1.)

Proposition 2. Let a [-locus phenotypical struc-
ture be descriptively non-epistatic. Suppose that
a fitness function A(z) is P-decomposed where
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2V, ..., 20(z)) are compatible with the corre-
sponding one-locus constituents. Then this struc-
ture is A-compatible.

Thus, our structural definition of non-epistasis
is consistent with the quantitative version (6), in
particular, with eqns (7)—(10).

Proof. Suppose that two zygotes z and z” are of
the same phenotype in the given descriptively
non-epistatic (= completely decomposable) phe-
notypical structure:

0i(zk) = @iz, 1<k<,

where ¢, are the one-locus GP-maps. Since the
one-locus constituents are A*’-compatible, we

have
20(z) = 202, 1<k<l.
Hence, A(z) = A(z’) by eqn (6). I

In particular, the additive selection is compa-
tible with any descriptively non-epistatic pheno-
typical structure if its summands are compatible
with the one-locus constituents. Traditionally,
the additive selection is a standard pattern for
the ‘‘quantitative non-epistasis” expressed in
terms of fitness function, see e.g. Moran (1965,
Section 9). Here we propose to measure the
epistasis by the Euclidean distance of a fitness
vector from the manifold of additive fitness
vectors. We call this the epistatic distance. This
distance is automatically zero for the additive
selection. All fitness vectors (functions) under
consideration are supposed to be compatible
with an a priori given descriptively non-epistatic
phenotypical structure.

In the next section we explicitly determine the
epistatic distance for any decomposable two-
locus phenotypical structure.

In principle, any P-decomposed fitness func-
tion can be chosen as a pattern for a quantitative
non-epistasis. However, in order to find the
corresponding epistatic distance some difficult
nonlinear problems have to be solved. Never-
theless, the ‘“‘multiplicative” epistasis distance
can be found in a structurally simple situation,
see Appendix B.

5. The Epistatic Metric

Let us start with the two-locus Mendelian
dominant structure. Let the alleles be 4, a and B,
b at the first and at the second locus, respec-
tively. This is the direct product of one-locus
Mendelian dominant structures. For the classes

{AABB, AABb, AaBB, AaBb},

{AAbb, Aabb}, {aaBB,aaBb}, {aabb} (11)
the additive fitness values are o + 7y, a + 6, f + 7,
p + 6 where

o = 2V(44) = 1 V(4a), p = 21V(aa)
and
y = JP(BB) = 2?(Bb), & = 1P (bb).

The whole fitness space corresponding to the
phenotypical structure (11) consists of all non-
negative non-zero 4-dimensional vectors A=
(A1, A2, 43, 44). The manifold .o of additive fitness
vectors is the intersection of Ri with the additive
subspace o/ the equation of which is

M—A—23+24=0,

so that .« is a hyperplane.

The epistatic distance d in the two-locus
Mendelian dominant structure is the Euclidian
distance from A€ Ri to .o,

d = dist(/, <7).
Since .7 — .o/ we have the lower bound

d >dist(p, 7). (12)

The hyperplane </ consists of all vectors A
which are orthogonal to the vector v = %(1, -1,
—1, 1). The latter is normalized, ||v|| = 1. Hence,

dist(, /) = |p,

p=Gv)=(h ——4s+44), (13)
where (4,v) is the standard inner product. By
the way, the oriented distance p distinguishes
the superadditive selection (p>0) from the sub-
additive one (p<0).
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It is easy to prove that inequality (12) turns
into equality, i.e.

d = dist(2, /), (14)
if the constraints

—4dmin(A, ) <A — A — A3+ A4

<4min(la, 13) (15)

are satisfied.

Let us consider the separative phenotypical
structure corresponding to a pair of unlinked
diallele loci. Here the result turns out to be
more complicated than above, the fitness vectors
are 9-dimensional, say /1:(/1;()?, where the
components 4y, ..., A9 are enumerated according
to the list of genotypes (1)~(3) with AabB =
AaBb. ;

Now the additive subspace .o/ is described by
the system of equations

M—Ao—23+M4=0,11 —A —As+ 1 =0,
M—A3—A1+48=0,41 —As — A7+ g = 0.

(16)
Indeed, let the one-locus fitness values be
o, 00,03 for AA, aa, Aa, respectively and

B, Ba, B3 for BB, bb, Bb. The additive two-locus
values are 41 =oao+ f, =01+ fr, 43 =02 +
ﬁlaiﬁ‘ =2 +ﬁ2:)*5 =03+ ﬂlaiﬁ =03 +ﬂ2si7 =
o + P, Ag = 0 + Pz, Ao = 03 + fi.

Let us introduce the oriented distances to
hyperplanes (16), namely,

pr =3 = Ja — A3+ Ja),
=l —ia—dstig D
and

p3 = %(/11 — A3 — A7+ Ag),

. 18
o=l —is—int i), Y

respectively. By some linear algebra calculations
[see Section Appendix B, part (a)] we obtain

[dist(h, /)]* =$[4(p7 + p3 + p3 + p3)
—4(p; + pa)(py + p3)

+ 2(p1p4 + P2p3)]- (19)

Both bound (12) and (under some constraints)
equality (14) remain in force but with d(i,./)
given by eqn (19).

Remarkably, the oriented distance p, coincides
with the measure E,p introduced in Wagner et al.
(1998). According to the latter the quantity p, =
EAp measures the absolute effect of subsequent
substitutions 4 ~a and B~ b on the genotypic
values (the fitness values, for instance) at the loci
B and A, respectively. Note that the only homo-
zygous values are accounted in p; in contrast
to P2> P35 P4

It is interesting to compare results (19) and
(20). One can try to measure the epistasis in the
two-locus Mendelian dominant structure using
formula (19) for the separative structure but with
the “dominance conditions”

M=As=A1 =12, o =1l¢, 23=1713 (20)

corresponding to structure (11). Then eqns (17)
and (18) reduce to p,=p,p=p3=ps =0
where p is defined by eqn (12). By substitution
into eqn (19) we obtain

dist(h, o/ ) = 4pl,
)\’ = (/117/127/13’/147/117)"29)"17/137/11)' (21)

According to eqn (20), in the separative structure
the fitness vector A represents the vector (4;, 4,,
A3,/4) from the Mendelian dominant structure.
Formula (21) includes the coefficient 4/3 as
opposed to 1 in the “intrinsic” formula (13).
Similarly, the epistatic distance in the direct
product of the one-locus Mendelian dominant
structure and the separative structure appears in
eqn (19) with the additional factor /4/3.
Thus, the wvalue of the epistatic distance
substantially depends on a preexisting pheno-
typical structure. We continue to discuss this
phenomenon in Section Appendix B, part (b).
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All the formulas for epistatic distances we
have obtained are some particular cases of a
general formula concerning the direct product of
two arbitrary one-locus multiallele phenotypical
structures. In order to write such a formula we
denote the classes of those one-locus structures
by Cgl),..., CM and ng),..., C?, respectively.
Then the classes in their direct product can be
described as the formal products Cfl)C,(f),
1<i<s,1<k<t. The total number of them is
n = st. Let Ay be the fitness value of the class
Cfl)C,(cz) . Consider the oriented distance

Pik = %(/111 — Mi — Akt + Aik)s (22)
where 2<i<s,2<k<t. The corresponding
additive subspace is
o = {AeR":p, =0, 2<i<s, 2<k<1}. (23)
Theorem 1. The formula
[dist(k, o/ )] =

He=De=DD pi—G6=1 > paps
Sl Sl ke#1
(24)
(=1 Z PiPi + Z PiPik]
JLi#] JLi#j, k#l
holds.

For the proof see Section 8, part (c).

A remarkable property of formula (24) is that
the structure of its right-hand side is uniquely
determined by the class numbers s and ¢. For
example, eqn (13) is valid for the direct product
of one-locus numerical structures. Meanwhile, in
this direct product the content of the classes is
different from that in the two-locus Mendelian
dominant structure.

6. The evolutionary Equations under
Phenotypical Selection

We start with the evolutionary equations
determined by an arbitrary given fitness function
Mg, h)(= i(h, g)), see Lyubich (1992, eqn 9.5.1).
We adjust these equations to any A-compatible
phenotypical structure.

A state of a population on the gamete level is a
distribution p(g) of probabilities of gametes. The
evolutionary equations yield the state p’(g) for
the offspring generation in terms of the state p(g)
in the parental generation.

For any gamete g we denote by ®(g) the set
of phenotypes f such that g is a recombinant
gamete for a zygote the phenotype of which is f.
More formally,

P(g) =
UePPGun, UV . f = o) xuvv = 95
(25)
Then under panmixia
/ Q)
= ) 26
r(9) ") (26)
Here
W(p)=>_ Mg, hp(g)p(h) 27)
g,h
is the mean fitness of the population and
Qu(p)= > A D T (28)
fedlg) (. 0=/
The coefficient
Ty = Y HUIV) (29)
Yulv=9

is the probability for the gamete pair y,y to
produce g by recombination.

The quantity Q,(p) is the contribution of the
gamete g to the mean fitness W( p):

> 0,(p) = W(p), (30)
g

so that W(p) can be expressed in terms of
phenotypical fitnesses A(f) as well. The linkage
distribution r(U|V) being fixed, the only para-
meters in the evolutionary eqns (26) are the
phenotypical fitnesses A(f). However, the dyna-
mical variables p(g) are related to the genotypes.
It is known that, in general, there is no definite
dynamics in terms of phenotypical probabilities
(Lewontin, 1974, Chapter 1; Lyubich, 1992,
Section 1.2).



634

7. The Equilibrium Set. The Finiteness Problem

For an equilibrium p we have p'(g) = p(9).
According to eqn (26) p is an equilibrium if and
only if

P(@W(p) — Qy(p) =0. (31)

The equilibrium set may be infinite. The classical
example is the Hardy—Weinberg parabola. More
generally, the equilibrium set is infinite for any
selection free population, i.e. for the neutral
phenotypical structure.

Actually, there are a lot of problems in
evolutionary theory, where the finiteness of the
equilibrium set is a needed condition a priori.
For instance, under this condition the number of
equilibria can be evaluated explicitly (Karlin &
Feldman, 1970; Lewontin, 1974; Renaud &
Morton, 1991; Lyubich, 1992). Also, under the
finiteness condition the problem of convergence
to equilibrium can be essentially simplified
(Blackley, 1964; Lyubich, 1992}

A standard “philosophical” opinion is that the
equilibrium set under ““effective” selection is finite
“as a rule”. However, there are only a few exact
statements of this kind for the multilocus multi-
allele populations, in particular, for the additive
or almost additive selection (Kun & Lyubich,
1980; Kun, 1988; Lyubich, 1992, Chapter 9;
Nagylaki et al., 1999). The following result has
been recently established (Lyubich ez al., 2001).

Theorem 2. For any acyclic phenotypical struc-
ture the equilibrium set is finite generically in the
phenotype fitness space.

In particular, we have

Corollary 1. If the phenotype of every homozy-
gote is specific (in particular, if the phenotypical
structure is separative) then the equilibrium set is
finite generically.

Corollary 2. For any multilocus phenotypical
structure with acyclic constituents the equilibrium
set is finite generically.

Also in Lyubich & Kirzhner (2002) a theorem of
generic finiteness of the equilibrium set in Karlin’s
model (10) was obtained from Theorem 1.

Y. LYUBICH AND V. KIRZHNER

The following theorem has been proved in
Kirzhner & Lyubich (2000).

Theorem 3. Under monomial (in particular,
multiplicative) selection the equilibrium set is
finite generically.

In all the above-mentioned cases the total
number of equilibria does not exceed 3", where
n is the total number of gamete genotypes in the
population.

On the other hand, the best possible upper
bound for the total number of equilibria cannot
be less than 2"-1 since the latter number is
attained.

Example. At a locus with allele ay, ...,a, we
consider the phenotypical structure with pheno-
types fi...fm for the homozygotes and with one
more phenotype f,,,;1 for all heterozygotes. This
structure is acyclic since the phenotypes of
homozygotes are specific. The compatible fitness
vector 1S {Ai, ... An, Amr1}. We assume these
fitness values pairwise distinct, so the phenotypi-
cal structure under consideration is A-determined.

Now the equilibrium equations (25) take the
form

Ap; + dmet Y pipk = piW, 1<i<m,

kik#i

(32)

where pi,...,p, are the probabilities of the
alleles ay, ..., a,, respectively.

With I = {i: p;#0} the system of eqn (32)
reduces to

Jipi+ (1= p)y = Woiel.  (33)

Under the normalizing condition X{p;:
iel} =1 the only solution of eqn (33) is

-1
1 1
;= _ ,iel. (34
P ii - im+1 (; Ai — im+1> ( )

This is a unique equilibrium with prescribed set /
if all differences A; — /,,51 are of the same sign.
With this property for all i, 1<i<m, the
equilibrium set is enumerated by non-empty
subsets of {1,...,m}. Accordingly, the total
number of equilibria is 2 —1 in this case.

We are grateful to the referee who brought the
quantitative epistasis problem to our attention.
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Appendix A

Proofs to Section 5

(a) Here we derive the distance formula (19). It
is convenient to rewrite eqns (16) as

(M vi) =0,1<k<4, (A.1)

where v, are those normalized vectors which are
orthogonal to the corresponding hyperplanes.
Namely,

vi = 41,-1,-1,1,0,0,0,0,0),
v, = 4(1,-1,0,0,-1,1,0,0,0),
vs = 41,0,-1,0,0,0,—1,1,0),
ve = 1(1,0,0,0,~1,0,—1,0,1).

Respectively, the oriented distances (17) and (18)
are

o = (hvp), 1<k<4.

Equations (A.1) determine the additive subspace

o/ <R’. In order to find the distance from a
vector ZeR’ to &% we use the orthogonal
decomposition

4
A= ka"k @ o, we.d

k=1

(A.2)

The coefficients &, in eqn (A.2) can be found
from the system of linear equations

4
> guci = pin 1<i<4, (A.3)
k=1

where gy = (v;,vi) are the entries of the Gram
matrix

,_.
—_ NN B
[\ N
N R =N
E N\ S
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The inverse matrix is

4 2 -2 1
g 42 a1 2
"9l 2 1 4 2

1 -2 -2 4
Now we can solve eqn (A.3) and find

& = 3(4,01 —2py —2p3+ p4)
& =3(=2p +4p, + p3 — 2py)

. (A.4)
&3 =5(=2p1 + p2 +4p3 — 2py)
& =5(p1 — 2p2 — 2p5 +4py)
It follows from eqns (A.2) and (A.3) that
4
[dist(L, AT = 1) &l

k=1

(A.5)

4 4
= guéil =) &ipr
ik=1 i=1

It remains to insert eqn (A.4) into eqn (A.5) in
order to get eqn (19).

(b) There is a deep reason for the divergence
between the epistatic distances (13) and (21)
which related to the two-locus Mendelian
dominant structure. Formula (13) was obtained
directly in this structure while eqn (21) is the
epistatic distance in the separative structure
specialized by means of eqn (20). Actually, we
have the linear mapping 7 : R* > R’,

T()“la /127 /137 )L‘4)

= (}“b)Qa135145/11:127}“17)"35)"1% (A6)
which transfers the fitness vectors from the two-
locus Mendelian dominant structure to the
separative one. Obviously, 7 maps the additive
hyperplane

%:{;\.ER‘LI}Ll*}Q*)@jL/M:O}

into the additive subspace </ =R’. However, T is
not isometric, its action does not preserve the
lengths of vectors and the angles between them.
In particular, for the vector v which is normal-
ized and orthogonal to #, we obtain

Tv=11,-1,-1,1,1,—-1,1,—1,1).

We see that ||Tv|| = 3/2 while ||v|| = 1. More-
over, T'v is not orthogonal to .«7. Indeed, other-
wise, Tv would be a linear combination of
vk, | <k <4, but this is false. For this reason the
constant ¢ =dist(7v, .«7) could be different from
dist(v,#)=1. They are really different since
¢=4/3 according to eqn (21). Note that eqn (21)
can be rewritten in the apparent geometrical
form
. ~ 4. 4
dist(Th, o/ ) = gdlst(k, H), heR". (A.7)
(c) Here we prove Theorem 5.1. Before doing
so let us verify eqn (23) for the additive subspace.
First, with

Jie = o+ B, 1<i<s, 1<k<t, (A.8)

all equations in eqn (23) are valid. Secondly, this
system of equations for the additive selection is
complete. Indeed, eqn (A.8) defines a linear
mapping R**" - R* with all 1; = 0 if and only if
all o; are equal to some o while all f;, = —a.
Hence, the number of independent equations for
the additive subspace is st—(s+ )+ 1= (s—
1)(t — 1), just the same as in eqn (23).

Now we introduce the vector v;(2<i<s,
2<k<1t) as the (s—1) x (t—1) matrix with the
entry % at the northwest corner as well as at the
intersection of the i-th row and the k-th column;
with the entries —% at the intersection of the 1st
row and k-th column as well as of the i-th row
and the 1st column; with the entries 0 at all other
places. Then eqn (22) takes the form

P = (M, vik), 2<i<s, 2<k<t. (A9)

The Gram matrix of the system {vy} is G =
(9ik, j1) where

ik, ji = (Vik, Vj1) = %(1 +0;)(1 + o). (A.10)
The orthogonal decomposition
A= (Z iikv,-k> Do, wed (A.11)
ik

yields the system of linear equations

S giln = oy 2<i<s, 2<k<t. (A.12)
ik
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(It is suffitient to multiply eqn (A.11) by v; and

use (w,v;) = 0.)
By eqn (A.10),

rewritten as

system eqn (A.12) can be

éj1+0j+fl+0':4pj1,

2<i<s, 2<k<t, (A.13)

where

0= Gu=> &no=)Y & (Ald
k i ik

so that

Zaj:Zr/:(i. (A.15)
J I

By summation over all indices in eqn (A.13)
and application of eqns (A.14) and (A.15) we

obtain
= Zpﬂ ijl

(A.16)

In turn, the summation over / in eqn (A.13)

yields
aj:%Zpﬂ—a (A.17)
/

and, similarly, the summation over j yields

4
TIZEE pjl_o-
J

(A.18)

Finally, ¢; are determined by eqns (A.13) and
(A.16)—(A.18).
Coming back to eqn (A.11) we obtain

[dist(Z, P = > Egevel)?
ik

(A.19)

- Z gzk,}lizké/l - Z éjlp]l

ikl

by eqn (A.12). In principle, it remains to
substitute ¢; we have found. However,
elementary algebraic machinery is also needed
to obtain the final result eqn (A.15). Let us
omit it.

Appendix B

Epistatic Distance to a Multiplicative Pattern

Consider the two-locus Mendelian dominant
structure (11) but with the multiplicative
fitness values oy, ad, fy, fo instead of additive
ones. The manifold .# of multiplicative fitness
vectors is the intersection of R4 with the
multiplicative manifold M the equatlon of
which is

Mia — A2l3 = 0.

This manifold is a quadric in R*, not a linear
subspace. We are going to find the Euclidian

distance of an arbitrary point p = (u;, ty, i3, Uy)
to .
Let & = Ak — iy, 1<k<4, where A=

(41,42, 43, 44) 1is the closest to p point of .Z.
The vector ¢ = (e, €, €3, &4) has to be orthogonal

(normal) to .# at the point A. Hence, € is
proportional to (44, — 43, —42, 41). We obtain the
following system of equations with unknown
e, 1<k<4:

(1 +e)(uy +84) = (o + &2)(p3 +23)  (B.1)
Pates  Ite pte mta (B.2)
&1 & &3 &4

To solve eqns (B.1) and (B.2) we introduce the
common value 7 of all fractions involved in eqn
(B.2). Then eqn (B.1) reduces to

£184 = €283 (B.3)

and eqn (B.2) yields the system of linear
equations

1T — &4 = [y, 84T — &1 = YUy,

T+ & = —l3, 3T+ & = —[,.

Then

. _ Mt T oy — M2 T 5T

B.4
T - L e o U (B4)

4 =
-1 2 -1

&3

with the (non-essential) constraint 7# 1.
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By substitution into eqn (B.3) we obtain a
quadratic equation

12 + D?t4r =0, (B.5)
where the coefficients are
4
F= s — oz, D= . (B.6)
k=1

Note, that r is the multiplicative analog of the
oriented distance p we have in the additive
situation, cf. eqn (13).

The multiplicative epistatic distance in ques-
tion is determined by the formula

4 2.2 2
~ D 4 D
[dist(p, .4)) = E 8% _Dran ;r
=1 (72 —1)

by eqn (B.4). Using eqn (B.5) one can subse-
quently eliminate 7> from eqn (B.7) obtaining

(B.7)

[dist(p, 4) = —rt ", (B.8)

where T is a root of eqn (B.5), i.e.

_ DEVA e 4 @)
2r
It is follows from eqn (B.6) that
A= [ — ) + (1 + 113)°]
(B.10)

[(y + #4)2 + (U — /13)20-

By eqn (B.9) A< D* and the signs of T and r are
opposite. This fact is consistent with eqn (B.8)
where the left-hand side has to be positive. As a
result,

212

D>+ /A

The choice of sign in eqn (B.9) provides the
smallest value eqn (B.11).

[dist(p, 4 = |rt | = (B.11)
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