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A general concept of phenotypical structure over a genotypical structure is devel-
oped. The direct decompositions of multilocus phenotypical structures are consid-
ered. Some aspects of phenotypical heredity are described in terms of graph theory.
The acyclic phenotypical structures are introduced and studied on this base. The
evolutionary equations are adjusted to the phenotypical selection. It is proved that
if a phenotypical structure is acyclic then the set of fixed points of the corresponding
evolutionary operator is finite except for a proper algebraic subset of the operator
space. Some applications of this theorem are given. © 2001 Academic Press
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1. INTRODUCTION

We develop a general mathematical scheme of relations between the
genotype (the set of genes of an individual) and the phenotype (the set of
observed characteristics), see [4; 5, Sect. 1.1]. Our main goal is to study
the evolution of the genotypical probabilities in a population under selec-
tion based on a phenotypical structure. The latter is formally defined as
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the triple (Z, @, ¢), where Z is the set of all considered genotypes in a
population, ® is the set of their phenotypes, and ¢ is a mapping from Z
onto @ (the gene control) associating the phenotypes with the underlying
genotypes. The existence of such a mapping is a fundamental principle; see
[3, Chap. 1]. A simplest manifestation of that was discovered by Mendel
(1866).

In his famous experiments Mendel worked with the alternative colors
of peas, Y (yellow) or G (green), and derived some rules of transmission
of these characteristics (phenotypes) from parents to offsprings. If both
parents are of phenotype G then so are all their offsprings, symbolically,
G x G — G. In fact, there are two sorts of Y, say Y, and Y, such that
Y, xY, = Y, butY, xY, > {Y,,Y,, G}, ie., any of the characteristics
Y., Y,, G is observed in offsprings. In this sense Y| can be called nonsplit-
ting yellow in contrast to the splitting yellow Y,. Moreover, stable frequen-
cies (probabilities) %, %, % for the offsprings Y;, Y, G are observed in a
large population in which all parents are Y,. To explain this result Mendel
introduced the concept of constant character (or gene in modern termi-
nology). He supposed that there are two genes, say A and a, such that
Y|, Y,, and G are their combinations (genotypes) Y; = AA4, G = aa, and
Y, = Aa = aA. The offsprings’ genotypes are independent combinations of
two genes coming together from two parental gene pools in the process of
fertilization. On the cell level this process results in fertilized eggs (zygotes).
In turn, the gene pools are formed by the separation of genes from the
genotypes of zygotes in the process of meiosis which results in the sex cells
(gametes).

The Mendel phenotypical structure is (Z, @, ¢) where Z = {AA, Aa, aa},
® ={Y, G} and ¢(AA) = ¢(Aa) =Y, ¢(aa) = G. In Mendel’s terms A
dominates a which just means that the phenotype of 4A4 is the same as
of Aa.

The genes carried by a zygote (or any body cell) are located in the
same position on two geometrically identical chromosomes, which are
called homologous. The position of a gene is called its locus. For example,
Menderl’s genes A and a are from the same locus or, in other words, they
are the alleles of this locus. In general, there are more than two alleles for
a given locus in the population but each zygote carries exactly two alle-
les which, maybe, are not distinct. (In this paper we do not consider the
so-called polyploids.)

There are many loci on each chromosome and there is a number of pairs
of homologous chromosomes in each body cell (in the zygote). The loci
are called linked if they relate to the same chromosome ( hence, to all
homologous chromosomes).

A zygote is called a homozygote if at every loci the alleles coincide. If for
a zygote there is a locus with distinct alleles then it is called a heterozygote.
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The special chromosomes X and Y determine the sex: XX are females
and XY are males. All other chromosomes (as well as the loci therein) are
called autosomal.

In meiosis the homologous chromosomes may break in some place (or
places) and then exchange corresponding parts. These events (crossing-
overs) are random; their probabilities are important structural parameters
of the population.

The present paper is organized as follows.

In Section 2 we describe the genotypical structure in terms of an algebraic
language; see [4-0].

In Section 3 we give some general definitions concerning the phenotypi-
cal structure and then consider the single-locus situation. In particular, we
describe the multiallele dominance in terms of an acyclic directed graph.

Section 4 is devoted to the construction of direct decompositions which,
in particular, allows us to describe some multilocus phenotypical structures
as the direct products of single-locus phenotypical structures.

In Section 5 we consider a natural concept of phenotypical heredity
for the multilocus multiallele population. Actually, this is formulated in
terms of a directed graph which shows a relation between the offspring
and parental gametes by mean of the homozygote phenotypes (the graph
of phenotypical heredity). If this graph is acyclic, we say that the phenotyp-
ical structure is acyclic. A particular case of that is the direct product of
single-locus dominant phenotypical structures, the multilocus dominance.

The evolutionary equations of natural selection can be adjusted to the
phenotypical structure assuming the selection parameters (the fitness coef-
ficients) depending only on phenotypes. This situation is considered in
Section 6. Note that, though the dynamical problems are principal in math-
ematical population genetics after classical works of Fisher, Haldane, and
Wright, the phenotypical selection processes are still investigated for some
elementary models like Mendel’s dominance.

An important aspect of the population dynamics is the “population
statics,” the subject of which is the equilibria set, i.e., the set of fixed points
of the evolutionary operator. By the Brouwer Fixed-Point Theorem the
equilibria set is nonempty. This set may be infinite in some realistic situ-
ations. For instance, this is true in absence of effective selection, i.e., in
the case of equal fitness coefficients when the equilibria set is the famous
Hardy—-Weinberg parabola (1908) or its generalizations. If the equilibria
set is finite then the question about the number of equilibria becomes
possible; see [3, Chap. 6] for biological motivation.

In Section 7 we consider the general problem of finiteness of the equi-
libria set and estimation of its cardinality. Using the classical elimination
theory we prove a very useful (cf. [2]) technical lemma concerning the equi-
libria equations extended to the complex space. (This is possible since the
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equations are algebraic.) This lemma does work in Section 8 where we
prove our Main Theorem. The latter states that the equilibria set is finite
for any acyclic phenotypical structure and for all fitness vectors (whose coordi-
nates are the fitness coefficients) except for an algebraic proper homogeneous
subset of the fitness space. In this sense the equilibria set is finite generically
for any acyclic phenotypical structure. The number of equilibria admits an
upper bound which only depends on the number of gamete genotypes under
consideration.

One of applications of the Main Theorem is generic finiteness of the
equilibria set for the multilocus dominant phenotypical structure. This
result is new even in the single-locus multiallele case.

2. GENOTYPICAL STRUCTURES

Consider a set L = {1, ..., [} of autosomal loci with allele genes a;, at
the ith locus (1 <i </, 1 < k <m;, m; > 2), so that we have the gene array

ayp o A

an - Ay,

The gamete genotypes (the gametes, for short) are formal commutative
monomes

!
8= l_[ ik,
i=1

The set of all gametes is denoted by I'. The total number of gametes is
|| = m, - - - m,. In particular, |I'| = 2/ for [ diallele loci.

Given g, for every subset U C L one can consider the corresponding
subgamete

8u = 1_[ (473
ieU

In particular, g;=a;, 1 <i < [. Obviously,

g =8u8v, (1)

where V' = L\U, the complement of U in L. The partitions U|V (U runs
over all subsets of L) are in a 1-1 correspondence with all possible crossing-
overs including the trivial one corresponding to J|L; g is the formal sym-

bol such that g; g5 = gz81 = &1
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If a crossing-over U|V occurs in meiosis then every gamete pair (g, &)
produces the recombinant gametes gy hy, and hyg,, with equal probabili-
ties %r(U [V). The probabilities »(U|V') constitute the linkage distribution.
Obviously,

r(Uy)=0, Y rUV)=1 2
u\v

Note that for any nonempty subset K C L the linkage distribution rg is
automatically defined; see [5, Eq. 6.1.1].

The loci 1, ..., [ are distributed among the chromosomes according to a
partition

L=C'.-..|Ca. 3)

into the linkage groups. Two (or more) loci are linked if they belong to
the same linkage group. In this case they cannot lie on nonhomologous
chromosomes. (The converse may not be true, see Example in [5, p. 238].)
Note that the chromosomal partition (3) requires a special form of the link-
age distribution r. Conversely, (3) can be determined in terms of r; see [5,
Lemma 6.1.6].

Each zygote is originated from a pair of gametes (g, #). However, its
genotype does not change under the transposition g <— h. Moreover, let

g:gl...gq, h:hlhq

be the decompositions of g and # into the products of subgametes accord-
ing to (3). Then any transposition g/ <— h/ does not affect the zygote
genotype since any pair of homological chromosomes is not ordered. For a
gamete pair (g, #) we denote the corresponding zygote genotype (the zygote,
for short) by g o h, so that go & is the class of all gamete pairs arising
from (g, #) by the above mentioned transpositions. All g o g are homozy-
gotes; all others are heterozygotes. The pair (Z, r) where Z is the set of all
zygotes and r is the linkage distribution can be called a genotypical structure
of the population. For any subset K C L we have the genotypical substruc-
ture (Zy, rx ) where Z is the set of subzygotes ggo hg for go h € Z. This
notion is well defined since the restriction of (3) to K is a chromosomal
partition as well; see [5, Lemma 6.1.5].

3. PHENOTYPICAL STRUCTURES

Let ® = {fi,..., f,} be the set of all possible phenotypes of zygotes,
1 < n < |Z|. We suppose that for every zygote genotype its phenotype is
uniquely determined. This means that there is a mapping (the gene control)
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¢: Z — @ such that the phenotype of a zygote z is ¢(z). This mapping
is supposed to be surjective, otherwise some elements of ® would not be
related to zygotes as their phenotypes. Note that the mapping ¢ can be
lifted to the Cartesian square I x I" (which consists of the gamete pairs)
by defining ¢(g, #) = ¢(g o h). Obviously, ¢(#4, g) = ¢(g, h), moreover,
¢(g, h) is invariant with respect off all chromosomal transpositions.

It is convenient to identify each phenotype f, with its preimage
¢~ 'f, € Z which is actually the class Z, of zygotes whose phenotype
is fi. The classes Z;, (1 < k < n) constitute the phenotypical partition of Z.
Any partition of Z can be formally considered as a phenotypical one: for
any zygote its phenotype can be determined as its class in the partition.

We call the triple (Z, ®, ¢) the phenotypical structure of the population.
For brevity, we do not mention the linkage distribution r in this definition,
though in fact, r is supposed to be given together with Z.

One can identify the phenotypical structures (Z, ®, ¢) and (Z, V¥, )
over the same genotypical structure if there exists a bijective mapping
T: ® — ¥ such that ¥(z) = T(¢(z)), hence, ¢(z) = T~ ((z)). In this
situation the structures (Z,W¥, ) and (Z,d, ¢) are called isomorphic.
For example, any phenotypical structure is isomorphic to the structure
determined by the corresponding phenotypical partition. The latter can
be considered as the canonical representative of the family of isomorphic
phenotypical structures.

Let (Z,®, ¢) and (Z, W, ¢) be some phenotypical structures over the
same genotypical structure. We say that (Z, WV, ¢) is an enlargement of
(Z,®, ¢), or (Z,D, ¢) is a refinement of (Z, V¥, i), if the phenotype ¥(z)
only depends on ¢(z2), i.e.,

¢(2) = o(§) = ¥(2) = ¥(9). “4)

In other words, (z) = 6(¢(z)) for a mapping 6: & — V. (This mapping is
automatically surjective.) In terms of partitions this means that every class
of (Z, ¥, ) is the union of some classes of (Z, ®, ¢), so that (Z, ¥, ¢) is
larger than (Z, ®, ¢), or (Z, ®, ¢) is finer than (Z, V¥, ¢).

Now we consider some examples of phenotypical structures.

ExampLE 3.1. In the simplest situation all zygotes are of the same phe-
notype, n = 1. We call this phenotypical structure neutral. This structure is
the largest one; i.e., it is the enlargement of every phenotypical structure
with the same Z.

ExampLE 3.2. In the opposite situation the phenotypes of distinct
zygotes are distinct, n = |Z|. This is just the case of a bijective gene con-
trol ¢. We call such a phenotypical structure separative. This structure
is the finest one, i.e., any phenotypical structure with the same Z is its
enlargement.
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ExaMPLE 3.3. At a single locus with two alleles A and a there are
exactly four phenotypical structures. Below we use a more standard nota-
tion AA instead of 4 o A, etc.; note that ad = Aa.

(1) The neutral one, where the only class is {AA, aa, Aa};
(2) The separative one: {AA}, {aa}, {Aa};

(3) The Mendel dominant one: {AA, Aa} and {aa};

(4) {AA,aa} and {Aa}.

In case (4) the phenotypes can be identified with the numbers of different
genes and then ¢(AA) = ¢(aa) =1, ¢(Aa) = 2. For this reason we call
this phenotypical structure quantitative.

ExampLE 3.4. Consider a single locus with any number m > 2 of alleles
a,...,a,. The zygote genotype a;a, is the gamete pair (a;, a;) up to
transposition, so that |Z| = m(m + 1)/2.

The principal biological mechanism for forming single-locus phenotypes
is dominance. We will describe this in terms of a directed graph (a domi-
nance graph) with vertices a4, ..., a,, and arcs a; — a; corresponding to
the sentences “a; dominated a;.” For instance, in the Mendel dominance
case with alleles {4, a} the dominance graph is 4 — a.

For the classical blood group system there are three alleles A, B, O
with the dominance graph A — O <« B; in particular, there is no domi-
nance relation between A and B. The corresponding phenotypes are {OO},
{AA, AO}, {BB, BO}, {AB}.

There is no dominance relation at all in the locus with two alleles M,
N, controlling another blood group system: {MM}, {NN}, {MN}. The
dominance graph has no arcs in this phenotypical structure.

Conversely, let a directed graph D with vertices ay, ..., a, be given.
Suppose that D is acyclic; i.e., there are no cycles in D. The corresponding
phenotypical structure is determined as follows.

First of all, irrespective of the graph, we attribute some pairwise different
phenotypes f; to the homozygotes a;a;, 1 < i < m. The same f; will be the
phenotype of the heterozygote a;a, (i # k) if a; — a; in D (then a;, — a;
is forbidden since D is acyclic). Finally, in the absence of arcs between a;
and a,, i # k, the heterozygote a;a; has a specific phenotype fi, = fi;-

Obviously, if there are no arcs in D then the corresponding phenotypical
structure is separative. But the neutral phenotypical structure cannot be
determined by a dominance graph, otherwise the homozygote phenotypes
would be distinct.

The quantitative phenotypical structure at a single diallele locus cannot
be described in dominance terms.
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4. DIRECT DECOMPOSITIONS

Consider a phenotypical structure (Z, ®, ¢). Suppose that for a nontrivial
partition L = L;|L, and for some phenotypical structures (Z , Py, ¢y),
(ZL,, Py, ¢,) (with the linkage distributions r;, and r;,, respectively) we
have ® = ®; x ®, and ¢ = ¢; X ¢, in the sense

¢(goh) = (§01(ng o hL] )s ‘Pz(ng o hLz))- %)
This means that there are two phenotypical partitions
ZL1=Z11U-~-UZMN ZL22221U"'U22n2
such that the initial phenotypical partition is
ZZU{ZlkZZjH§k§n1’1§j§”2}7 (6)
where
ZyZyj={goheZlg, ohy € Zy, g, 0hyL, € Zy}.

In this situation we say that (Z, ®, ¢) is the direct product of the constituents
(ZLI ’ (I)] ’ ‘P]) and (ZLz’ (I)Za QDZ)a and we write

(Z,0,¢) = (ZLl’ D, @1) X (ZLZ, D,, @2)-

A phenotypical structure which is isomorphic to a direct product is called
decomposable. The number of phenotypes in this case is n,7n, as (6) shows.
The gene control ¢ of form (5) can be interpreted as a result of indepen-
dently acting gene controls ¢, and ¢,.

If a phenotypical structure is not decomposable then it is called inde-
composable. Biologically, this is the case of epistasis between the groups of
loci L; and L,.

Likewise, one can consider the direct decomposition

(Z, (I), (P) = (Zl, q)l’ QDI) XX (Zs’q)s’ st) (7)

for any partition L = L,|---|L,, s > 2, with nonempty L;, 1 < k < s. This
is also the situation of decomposability but with s constituents. In particular,
if all L, are singletons, s = /, then (Z, ®, ¢) is the direct product of some
single-locus phenotypical structures. In this case

p(goh)= (€01(81 ohy),...,e(g 0 hl)) )

and we say that (Z,®, ¢) is completely decomposable (or completely
nonepistatic).

Obviously, any neutral phenotypical structure is completely decompos-
able with neutral constituents.
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PROPOSITION 4.1. A separative phenotypical structure is completely decom-
posable if and only if the loci 1, ..., 1 are pairwise unlinked.

Proof.  1f the loci are pairwise unlinked then the structure is the direct
product of the single-locus separative structures. Indeed, in this case the
zygotes g o h can be identified with the noncommutative monomes

1
H ik, qiq, ©)
i=1

with 1 < k; < q; < m;, 1 < i < [. The submonomes a;_a;, are just the
zygotes at the ith locus, 1 < i < /. In any separative structure the pheno-
types are in a 1-1 correspondence with the zygotes. Hence, (9) yields the
desired direct decomposition.

Note that the number of phenotypes above is

!
1
”:H”i’”i=§mi(mi+1), 1<i<l
i=1

(In particular, n = 3/ for [ diallele loci.)

Now let a [-locus separative structure be completely decomposable and
let the number of phenotypes at the ith locus be v;, 1 < i < [. Then the
number of phenotypes in the whole structure is

1
V:HVifl’l
i=1

since v; < n;, 1 < i <I. On the other hand, the monomes (9) are phenotyp-
ically distinguished, so that v > n. Hence, v = n and then there is no pair
of linked loci, otherwise some more zygotes would appear. For example, if
the loci 1 and 2 are linked then

110y © A1dy1 F A114y) © d12dy) (10)
in contrast to the case of unlinked loci. |

We see that the direct product of phenotypical structures is well defined
only if a chromosomal partition for the whole system of loci L = {1, ..., [}
is given a priori. For this reason the direct decomposition makes sense only
inside a given phenotypical structure.

COROLLARY 4.1. The separative 2-locus phenotypical structure with linked
loci is indecomposable.
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For example, let the alleles be A and a at the first locus and B, b at the
second one. Then there are the following zygotes (cf. (9)): (1) the homozy-
gotes AABB, AAbb, aaBB, aabb; (2) the simple heterozygotes AaBB, Aabb,
AABb, aaBb; (3) the double heterozygotes AaBb and AabB which, how-
ever, coincide if the loci are unlinked. If the loci are linked then AaBb =
AB o ab, AabB = Ab o aB, so that AaBb # AabB. In the latter case
the direct product of single-locus separative structures contains the class
{AaBb, AabB}. In the 2-locus separative structure this class splits into the
classes {AaBb} and {AabB}.

We say that there is no position effect in a phenotypical structure
(Z, @, ¢) if the phenotype ¢(g o &) is invariant for the gene transpositions
g; < h;, 1 <i <. Equivalently, ¢(g o &) only depends on the set of genes
situated in g, A, irrespective of how the genes are placed in the homolo-
gous chromosomes. For example, (10) says that there is a position effect
in the separative 2-locus structure with linked loci. This effect disappears
in the direct product of the single-locus separative structures regardless of
the linkage.

PROPOSITION 4.2.  There is no position effect in a phenotypical structure
(Z,W, ) if and only if it is an enlargement of the direct product (Z, ®, ¢) of
the single-locus separative structures.

Thus, the latter is the finest phenotypical structure with no position effect.

Proof.  Obviously, there is no position effect in (Z, ®, ¢); see (8). A for-
tiori, the same is true for any of its enlargement. Conversely, let (Z, ¥, ¢)
be a phenotypical structure with no position effect. This means that the phe-
notype W(g o h) is uniquely determined by the monome (9) which, in turn,
is a bijective function of ¢(g o ). Thus, we have V(g o h) = 0(e(g o h))
where 6 is a mapping & — W. We see that (Z, V¥, ¢) is an enlargement of
(Z,D,¢). 1

An enlargement of a decomposable phenotypical structure may be inde-
composable. Moreover, there are some indecomposable phenotypical struc-
tures with no position effect.

ExAMPLE 4.1. For two diallele loci we consider the quantitative phe-
notypical structure. Its classes are K; = {homozygotes}, K, = {simple
heterozygotes}, K; = {double heterozygote(s)}. (Respectively, ¢|K; = 2,
oK, = 3, ¢|K; = 4.) Obviously, there is no position effect in this struc-
ture. It is indecomposable, for otherwise, one of the constituents would be
neutral while the other separative. However, their direct product is not the
quantitative phenotypical structure.
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5. ACYCLIC PHENOTYPICAL STRUCTURES

Let (Z, @, ¢) be a phenotypical structure. For some gametes g and & we
write & > g (or g < h) if g is a recombinant gamete of a gamete pair (1, x)
with the phenotype ¢(4, k). More formally, 2 > g means that there exists
a gamete pair (7, x) and a partition U|V such that

(v, x)=e@(h, h),  yyxy =g 1)
LemmA 5.1. If o(y, x) = ¢(h, h) then h > y and h > .

Proof. Here (11) isvalidwithg =y, U = L,V =, so h > . Similarly,
h>=yx 1

COROLLARY 5.1.  The binary relation = on the gamete set I is reflexive,
ie,h=g=h>g.

Proof. g=h= ¢(g,g)=eh,h)=>h>g |1

Now let & > g (or g < h) mean that (h > g)&(h # g). By Corollary
5.1, h = g if and only if & > g or h = g and the latter alternative is strict.
We will interpret the relation & > g as a directed graph G whose set of
vertices is I' and &4 — g in G if and only if & > g. We call G the graph of
phenotypical heredity and denote it by G(Z, ®, ¢). This is a generalization
of the dominance graph at a single locus. Indeed, let in notation of Example
3.4, g =a;and h = ay, k # i. Then (11) means that ¢(a,a;) = ¢(a,a;) with
some a;. Here j # i since the homozygous phenotypes are pairwise distinct.
Then j = k and a; — a;; otherwise, the phenotype f;; of the heterozygote
a;a; would be different from the phenotype f; of the homozygote a;ay.
Thus, the relation a; > a; is equivalent to the presence of the arc a;, — a;
in the dominance graph.

It may happen that the graph of phenotypical heredity is not acyclic. The
simplest example of this kind is the neutral phenotypical structure. Indeed,
in this case & > g as soon as h # g, so there is the cycle & > g > h.

DErINITION 5.1. A phenotypical structure is called acyclic if the corre-
sponding graph of phenotypical heredity is acyclic.

EXAMPLE 5.1. Any single-locus dominant phenotypical structure is
acyclic.

If a graph has no arcs then it is trivially acyclic. For a graph of pheno-
typical heredity the absence of arcs just means that # = g =— h = g. Here
is an application of this remark.

PROPOSITION 5.1. A phenotypical structure is acyclic if the phenotype of
every homozygote is specific, i.e., it is different from all other phenotypes.
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Proof. Now the only case in (11) is & = g since ¢(y, x) = ¢(h, h)
implies y = y = h by assumption.

COROLLARY 5.2. All separative phenotypical structures are acyclic.
Proposition 5.1 can be partially inverted.

PROPOSITION 5.2.  If a phenotypical structure is acyclic then the homozy-
gous phenotypes are pairwise distinct.

Proof. By Lemma 5.1 if ¢(g, g) = ¢(h, h) then h = g and g > h. If
h # g then there is the cycle & > g > h.

In any /-locus quantitative phenotypical structure all homozygotes have
the same phenotype (which can be identified with the number /). By
Proposition 5.2 this structure is not acyclic.

Many multilocus acyclic phenotypical structures can be extracted from

PROPOSITION 5.3. Any decomposable phenotypical structure (Z,®, ¢)
with acyclic constituents is acyclic.

Proof. In situation (7) let us consider the corresponding graphs Gy,
1 < k < s, the graphs of phenotypical heredity for the constituents. It is
easy to see that if # — gin G(Z, ®, ¢) then h; > g; forallk,1 <k <y,
and, moreover, h; # g;, for some k. Therefore, any cycle in G(Z, @, ¢)
yields a cycle for a constituent. U

COROLLARY 5.3. The direct product of separative phenotypical structures
is acyclic.
Any completely decomposable phenotypical structure whose constituents

are determined by some dominance graphs can be called a multilocus
dominance.

COROLLARY 5.4. Any multilocus (in particular, single-locus) dominant
phenotypical structure is acyclic.

PROPOSITION 5.4. If a phenotypical structure (Z,V, ) is acyclic then any
refinement (Z, @, ¢) is acyclic as well.

Proof. By (11) and (4) we obtain that if 2 = g in (Z, P, ¢) then
h > g in (Z,¥, ). Therefore, any cycle in G(Z, ®, ¢) is also a cycle in
G(Z, Vv, ¢). 1

For any acyclic directed graph the graph of its paths determines a partial
ordering of the vertices. In turn, any partial ordering of a finite set can be
extended to a linear ordering. Thus, we have

LEMMA 5.2. For any acyclic phenotypical structure (Z,®, ¢) the
relation > can be extended to a linear order on the gamete set 1.

Later on we preserve the notation > for the extended relation.
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6. PHENOTYPICAL SELECTION: PARAMETERS AND
EVOLUTIONARY EQUATIONS

A fitness function X of a population is a nonzero mapping Z — R, where,
as before, Z is the set of zygotes, R, = {{ € R: £ > 0}. The value A(z) is
called the fitness coefficient of a zygote z € Z.

Given a phenotypical structure (Z, @, ¢), we suppose that the fitness
coefficient A(z) only depends on the phenotype ¢(z), i.e.,

A(z) = A¢(2)), (12)

where A is a nonzero mapping from ® into R,. For any f € ® the value
A(f) is called the fitness coefficient of the phenotype f. The n-tuple (A(f) :
f € ®) is called the phenotype fitness vector. The set of all fitness vectors is
R7\{0}, the punctured at 0 coordinate cone in R”. This cone can be called
the phenotype fitness space.

Under our assumption (12) the fitness function A and the phenotyp-
ical structure (Z, ®, ¢) are called compatible and (Z,®, ¢) is called
A-compatible. For example, any fitness function is compatible with the sep-
arative phenotypical structure. However, the latter is too fine in general.
In the largest A-compatible phenotypical structure the classes are just the
level sets of A. This means that some zygotes z and ¢ are of the same
phenotype if and only if A(z) = A({). In this case we say that the pheno-
typical structure is A-determined. The separative phenotypical structure is
determined by any bijective fitness function A.

The neutral phenotypical structure is determined by a constant fitness
function. A population with a constant fitness function is called selection
free or, briefly, free [4].

The Mendel dominant phenotypical structure at a single locus with alleles
A and a such that A\(AA) = A(Aa) # A(aa) is A-determined. This structure
is not compatible with any constant fitness function.

Like ¢, one can lift A to I' x I' by setting A(g, &) = A(g o k). Then (12)
takes the form

Obviously, A(h, g) = A(g, k). Thus, every lifted fitness function is a nonneg-
ative nonzero matrix over I' x I', the fitness matrix; this matrix is symmetric,
moreover, A(g, h) = A(g',h)if goh=g ol

The selection process is governed by the evolutionary equations where
the fitness coefficients are parameters. We consider these equations on the
gamete level, cf. [5, Sects. 1.2, 1.3]. Then a state p of the population is a
probability distribution on I', p = (p(g) : g € I'). Thus, the state space is
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the simplex
§= {(p(g)) 2 p(@)=1,p() = 0},
g

where g runs over I'. This is just the basis simplex in the vector space R/,
If p is a state of the population in a generation then its state in the next
generation is p’ = Fp, where F is a mapping S — § called the evolutionary
operator of the population.
The evolutionary equations of the population (expressing the mapping F
in coordinate form) are

P©) = 5 T U T Meuhy. hog)plsuhy pthosy), (1)
P) oy n
where W(p) is the mean fitness of the population
W(p)=3_Ag h)p(g)p(h), (15)
g h

see [5, Egs. 9.5.1 and 9.5.3]. The range for both g and % in (14) and (15) is I'.
Obviously, W(p) > 0if p(g) > 0 for all g, so that (14) makes sense at least
for p € IntS. We suppose that all A(g, g) > 0 which provides W(p) > 0
everywhere on the simplex S, so that (14) can be extended to the whole S.

It is convenient to rewrite (14) using the substitution gyh, = v,
hy gy = x (the inverse substitution is g = yyxy, A = xyyy). In this way
we obtain

Y rUV) 3 A x) () p(x)- (16)

'(8) !
p ==
W(p) 14 Yuxv=g¢

In order to adjust these evolutionary equations to a given A-compatible
phenotypical structure (Z, ®, ¢) we relate to any gamete g the set

D(g)={f €@y, x, UV : f=o(v, X): yuxv = &} 17)

Obviously, the pairs (y, x) in (16) are just those which appear in (17). It
is important that the inclusion ¢(#, k) € ®(g) is equivalent to & > g. In

particular, ¢(g, g) € ®(g).
Using (17) and (13) we can represent (16) in the form

/ _ 1 7
P8 = W) & ) fe%%g) A(f) w;:g p()p(x) (18)

(v X)=f

or, briefly,
P'(8) = Qu(p)/W(p), (19)
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where

Q(p)= 2 M) X 7y eP(MP(X) (20)

fed(g) o(y, x)=f

with

Tyg= 2. rUV).

YuXxv=8

According to (1) and (2)
=1. (21)
It follows from (19) that

W(p) =2_0(p) (22)
4

since p’ € § for all p € S. The mean fitness W (p) can also be rewritten in
terms of the phenotype fitness coefficients, namely,

W(p)=> Af) . p(@ph) (23)

fe@ o(g. h)=f

because of (15) and (13).

Being quadratic fractional, the evolutionary equations (18) are homo-
geneous of degree 0 with respect to the phenotype fitness vector
(A(f) : f € ®). Hence, all proportional phenotype fitness vectors deter-
mine the same evolutionary operator. This means that the set R7}\{0}
of all those vectors can be reduced to RP’fl, the nonnegative part
of (n — 1)-dimensional real projective space. Another possible reduc-
tion is the normalization with respect to a norm in R”, for example,
max(A(f): f € @) =1 or Y A(f) = 1. After this we get the nonnegative
part of the (n — 1)-dimensional unit sphere in the normed space R”. In
any case we can consider a reduced fitness space instead of the initial one.

Either of the above procedures reduces each subset X C R!\{0}. The
correspondence between X and its reduction is one-to-one if X is homo-
geneous, i.e., x € X = a-x € X for all @ > 0. Therefore, if X is a homo-
geneous proper subset of the initial fitness space then its reduction is a proper
subset of the reduced fitness space.

7. THE EQUILIBRIA SET

A state p of a population is called an equilibrium if p is a fixed point of
the evolutionary operator F, i.e., Fp = p.
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If the population is selection free (the phenotypical structure is neutral)
then the equilibria set consists of

!
p(g) =T1r" (8,

i=1
where p(®) are arbitrary single-locus states; see [5, Theorem 6.3.1]. Obvi-
ously, this set is infinite. Note that the evolutionary operator of the free
population is purely quadratic; cf. [5, Eq. 6.2.14]. However, in the class of
all quadratic mappings S — S with nonnegative coefficients the fixed point
set is finite generically; see [5, Theorem 8.1.3]. The latter follows from the
classical elimination theory, see [1], which learns that for any system of
homogeneous algebraic equations

Fi(&,...,6)=0,...,F(&,...,&,)=0 (24)
with indefinite real coefficients and with complex unknowns &,..., ¢,
there exists a system {R;, ..., R,} of polynomials of the coefficients such

that (24) has a nontrivial complex solution if and only if the coefficients
satisfy the equations

R, =0,...,R,=0. (25)

Any specialization of the coefficients preserves the connection between the
solvability of (24) and the validity of (25).

The polynomials R; are the resultants of the system (24). They are homo-
geneous with respect to the coefficients of every F;, 1 <i < s. All corre-
sponding homogeneity degrees are nonzero.

It may happen that the system (25) is empty (the case ¢ = 0). This just
means that the system (24) has a nontrivial complex solution for every set
of values of the coefficients.

It follows from (19) that all equilibrium states p satisfy the equations

p(@W(p) = Qy(p) =0, (26)
where g runs over I'. In addition,
> p(y)—1=0. (27)
Y

In order to use the resultants we pass from (26) and (27) to some homoge-
neous equations with unknown complex vector & = (&(y) : y € I'), namely,

£(8)0n(&) — E()Qe(£) =0,  h>g, (28)

and

2 &(y) —mé() =0. (29)
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Here 7 is a real coefficient, / is a fixed element of I', the Q,(§) are the
quadratic forms (20) but in variables ¢ instead of p. From now on we
use the linear order on I' coming from Lemma 5.2. The equations (28)
are enumerated by those pairs (%, g) with 4 > g. (Obviously, the pairs
(h, g) with g > h are redundant.) It is important that each solution of (26)
satisfies (28).

Every Eq. (28) is homogeneous of degree 3, but (29) is homogeneous of
degree 1. Also note that (28) are homogeneous of degree 1 with respect to
the phenotype fitness vector; see (20).

The resultant equations (25) for the system (28) and (29) take the form

di,s .
> (A AR T =0, 1=is, (30)

j=0

where ¢; ; are homogeneous polynomials of the real vector variable
A= (A4,...,A,). The following technical lemma is valid for an arbitrary
phenotypical structure.

LEMMA 7.1.  Let for every | € I there exists a polynomial c;; ; # 0. Con-
sider the algebraic proper homogeneous subset E C R" defined by the equation
l_[ Ci,j[,l(A) == 0. (31)

lel’

If the phenotype fitness vector A = (A(f)), ..., A(f,)) does not belong to E
then the set F\ of complex solutions of the system (26) and (27) is finite. In
particular, the corresponding equilibria set is finite.

Proof.  Suppose to the contrary. Then there exists [ € ' such that the
coordinate p(/) runs over an infinite set Fy ; in the complex plane C when
p runs over F,. Take any point w # 0 from F, ; and consider any p € F,
such that p(/) = w. The vector ¢ = p is a nontrivial solution of system (28)
and (29) with 7 = 1/w. Hence, all resultant equations (30) are fulfilled with
this 7, so that each of those equations with unknown 7 has infinitely many
roots. Therefore, all ¢; ,(A) = 0, in particular, ¢; ;(A) = 0. A fortiori, A
satisfies (31), i.e., A € E, which contradicts our assumption.

Note that the system (26) and (27) has exactly the same complex solu-
tions as

p(&)W(p) — Q.(p) =0, g#k (32)

jointly with (27). Indeed, the latter system implies Eq. (26) corresponding
to g = k by summation of all Egs. (32) and by taking into account (27)
and (22). For this reason Lemma 7.1 is valid for the system (32) and (27)
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where the number of unknowns is (in contrast to (26) and (27)) equal to the
number of equations. By the Bezout Theorem we obtain the upper bound

|F| < 31 (33)

for the number of complex solutions of the system (26) and (27).

8. THE MAIN THEOREM

Our Main Theorem is the following

THEOREM 8.1. Let a phenotypical structure (Z, ®, ¢) be acyclic. Then the
equilibria set is finite for all phenotype fitness vectors (A(f) : f € ®) except
for a proper homogeneous algebraic subset E C R’}.

Hence, the exceptional set E is of zero Lebesgue measure, and its com-
plement R"\E is open and dense, so E is small in any reasonable sense.
The same is also true for its reduction by projectivization or normaliza-
tion. In any case we can say that the equilibria set is finite generically for any
acyclic phenotypical structure. For the single-locus separative phenotypical
structure this fact is elementary; see [5, Corollary 9.1.3].

Proof.  There exists | € T such that all polynomials c;; ; are equal to zero.
We prove that this assumption leads to a contradiction.
Let us start with the following auxiliary system of equations

§(h)[ > Wyx,gé(v)f()()] =0, h>g (34)

(v, X)=¢(8, &)

In (34) we have g > v and g > y by Lemma 5.1. Let ({(y): y € I') be a
nontrivial complex solution of (34) and let g = min{y : £(y) # 0}. Select
the equations with this g. Since &(y)&(x) = 0 for g = v or g > x, the
sum in (34) is reduced to ,, ,£*(g) which actually is £*(g) by (21). Since
£(g) # 0 by definition, we obtain £(#) = 0 for all & > g and, as we know,
&(h) =0 for all g > h. Thus, the only nonzero coordinate is &£(g).

Now we consider (34) simultaneously with (29). Show that if 7 # 1, then
the system (34) and (29) has only the trivial complex solution. Indeed, let
(&é(vy) : v € ') be a nontrivial complex solution. Then &(g) # 0 for some g
but £(y) = 0 for y # g. Thus, (29) becomes £(g) = 7£(/). Hence, [ = g
and 7 = 1, which is a contradiction.

The resultants of the system (34) and (29) are polynomials of 7. For any
T # 1 at least one of them, say 6, does not vanish.
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Now we slightly complicate (34) using some independent parameters x,:

%g§(h)[ > Wyx,gf(v)f(x)} =0, h>g (35)
e(v: )=¢(8 8)

The system (35) and (29) turns into (34) and (29) if x, = 1 for all g.
Under this specialization one of the resultants of (35) and (29) turns into 6.

Since this resultant is homogeneous with respect to every x,, it is a monome
of the form

o(7) [ (36)
8

The exponent v, is equal to the sum of the homogeneity degrees of the

resultant with respect to the coefficients of those polynomials (35) which
correspond to A such that & > g.
As the next step we consider the system

né(@)Qn(é) — E(h)Qe (&1, %) =0,  h>g, (37

where

O (&msx)=p Y Af) Do Domy £E(n)E(x)

fed(g) L X)=
f#e(s.8) e 0=/

+%g[ > Zm,gS(v)g(x)} (38)
(v, X)=¢(8 8)

W is an additional parameter.

Since ¢(y, v) € ®(h) implies y > h, for every y € I the term A(¢(vy, v))
cannot appear in Eq. (37) with g > v.

The system (37) for uw = 0 turns into (35). Therefore, one of resultants
of system (37) and (29) is of the form

R=0(r) ] +R, (39)
8

where R is a polynomial of 7, u, all A(f), and all x,,
R|,—=0. (40)
Every monome in R is of the form

7w’ TTAG) [T s" (41)
f 8
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up to a constant factor. In all monomes from R we have o > 0 because
of (40). In all remaining monomes o = 0 and all &y = 0 but 0, = v,. We
prove that

a'—l—ng:ng (42)
8 8

in every monome (41).
Consider the system of homogeneous equations of third degree with
indefinite coefficients,

Yay =0,  h>g (43)
I
Here I = (i, : v € I') is the multi-index,
i, >0, > i, =3,
Y

and

& =TTem)".

A resultant of (43) and (29) turns into R by the specialization

ah,g;[ :Mzah,g;l,fA(f)+Bh,g;I%g’ h > & (44)
f

where @, o.; ¢ and B, ,.; are numerical coefficients. Let o, , be the homo-
geneity degrees of this resultant with respect to the coefficients aj, . ;.
If we substitute 2u and 2x, instead of p and x,, respectively, then all

ay, o1 get the same factor 2 and then R gets the factor 2” with

p= Z{Uh,g|(h7 g) th > g}
Every monome in R must get the same factor. Looking at (41) we see that

p=0+) o, (45)
g

On the other hand,
p= Z Ve (46)
g

from the first summand of (39). Comparing (45) to (46) we obtain (42).
Another relation we need is

Vg= D Op (47)

h:h>g
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In order to prove this we note that the considered resultant of (43) and
(29) turns into (36) with specialization (44) and p = 0. After that its homo-
genelty degree is v, with respect to the variable x,. On the other hand, x,
in R comes only from Egs. (37). The homogenelty degree of R| =0 w1th
respect to x, is exactly the right hand side of (47).

For pu = 1 and %, = A(e(g g)) the system (37) turns into (28).
Therefore,

R = R|\m1,v g, =o(g ) (48)

is a resultant of system (28) and (29). If remains to prove that R # 0.
By (39) it is sufficient to show that each monome (41) with ¢ > 0 cannot
turn into a monome of the form

™]] "y
g
by specialization indicated in (48). Suppose to the contrary that
[TA) TTAe(s. 8)% =[] Ale(8. 8))". (49)
f 8 g

We know that the variables A(¢(g, g)) are pairwise distinct (Proposition 5.2).
Hence, (49) is equivalent to

Ve Vg = W T E4(g ) (50)

together with
(Ve) (¢(g: &) # f) =& =0. (D
Since o > 0, it follows from (42) that there exists g such that v; > w;.

Then &, 5) > 0 by (50). One can assume that g with the latter property
is maximal with respect to our ordering of I'. Then &, ,) =0 for y > g
hence, (50) yields v, = w,, if y > g. Thus, the original monome (41) is
actually

w7 [T Ale(y, v)%0 T %" [ %y (52)
v=8 8=8 Y-8
If we take A(f) = 0 for all f which are different from all A(¢(g, g)), this
specialization does not affect (52) but at the same time (44) implies

Apgr = B D% g1 o(y.) MO(Ys V) + B g 1% h>g.
y

However, a; .1 o(y,y
after (38). Therefore,

y = 0 for y < g, as we know from the remark

ah,g;[ =M Z ah,g;l, o(vy, y)A(QD(y’ 7)) + Bh, g;lxg’ h >~ 8.
Y-8
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Under the substitutions A(¢(y, v)) — 2A(¢(y,v)) (v > §) and », —

2x,(g > §), we obtain a;, o.; — 2a, .. for g > g. Then the resultant R
gets the factor

Dohmgrg Thg — DVg=g Vs

by (47). At the same time the monome (52) gets

2“’§+Zv>§ Yy,
Thus,

> Vg = wg + 2 vy
8=g -8

whence v; = w;

3 g 1-€., £z, 5 = 0, which is a contradiction. 1

COROLLARY 8.1. For any acyclic phenotypical structure and for all nonex-
ceptional fitness vectors the total number of equilibria does not exceed 3"~

Now we apply Theorem 8.1 to some more special situations. First of all,
combining it with Corollary 5.4 we obtain the following

COROLLARY 8.2. For any multilocus (in particular, single-locus) dominant
phenotypical structure the equilibria set is finite generically.

Similarly, using Proposition 5.1 we get

COROLLARY 8.3. If the phenotype of every homozygote is specific (in par-
ticular, if the phenotypical structure is separative) then the equilibria set is finite
generically.

For the separative phenotypical structure with / linked loci (the case
g = 1 in (3)) the phenotypical fitness space consists of all nonnegative
nonzero symmetric matrices [A(g, /)]. According to Corollary 8.3, except
for a proper homogeneous algebraic subset in the matrix space, the fixed point
set of the evolutionary operator (14) (or (16)) is finite. The Main Theorem
provides the same conclusion even if the matrix space is restricted by the
relations

o(8 h)=¢(g, h)= Mg h)=Ag, 1),

where ¢ comes from an arbitrary acyclic phenotypical structure.
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