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Complex Limiting Behaviour of Multilocus Genetic Systems in Cyclical
Environments
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Here we demonstrate that complex limiting behaviour (supercycles and chaotic-like phenomena) may
arise in a rather broad and natural class of multilocus systems, both haploid and diploid, experiencing
stabilizing selection with cyclically varying optima over a short period. These include loci with purely
additive, dominant, or semidominant effects, with different types of their chromosome distribution. The
observed complex dynamics appeared to manifest a certain stability with respect to disturbances of
parameters specifying the structure of the selected system and environmental characteristics. This mode
of multilocus dynamics by far exceeds the potential attainable under ordinary selection models resulting
in simple behaviour. It may represent a novel evolutionary mechanism increasing genetic diversity over
long time periods. This novel mechanism could contribute to the observation that biological diversity
has increased over geological time regardless of the well-known massive extinctions.
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1. Introduction

We found earlier that cyclical selection with a short
period may induce autooscillations with a long period
(‘‘supercycles’’) (Kirzhner et al., 1994, 1995b). In all
of the foregoing two-locus discrete-time systems,
these supercycles appeared to be possible for narrow
ranges of parameters. Later, we tried to overcome this
limitation. As a result, a very natural class of models
was discovered where cyclical selection generates
complex limiting behaviour, including supercycles
and chaotic-like phenomena (Kirzhner et al.,
1996).

This class involves different forms of multilocus
stabilizing selection with cyclically moving optimum.
Stabilizing selection is one of the major models
of population genetics and many efforts were
devoted to its theoretical analysis in the last decade
(Burger, 1989; Turelli & Barton, 1990; Zhivotovsky
& Feldman, 1992; Gavrilets & Hastings, 1994a).

Stabilizing selection in temporally changing environ-
ments has also attracted the attention of theoreti-
cians, especially in view of the interest in
recombination evolution (Maynard Smith, 1988;
Charlesworth, 1993; Korol et al., 1994). In particular,
these authors have shown that cyclical selection can
maintain recombination. Earlier, Lande (1976),
assuming loose linkage and weak selection reached
the conclusion that stabilizing selection with tem-
porally moving optimum does not help in the
maintenance of genetic variation. This leads to a
generalization that a temporally changing environ-
ment is, in itself, not sufficient as a factor of
recombination evolution (e.g. Kondrashov, 1993).
Our results indicate that either a change in the form
of the fitness function, or using non-equal additive
genes or genes with a dominance effect, relax the
problem of polymorphism maintenance (Kirzhner
et al., 1995a; Korol et al., 1994, 1996). As a rule,
this is possible under sufficiently strong selection
and/or relatively close linkage. Consequently, stable
polymorphism is accompanied by linkage disequi-
libria. This may help in a re-evaluation of different
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hypotheses of recombination evolution (Korol et al.,
1994). Recently, Kondrashov & Yampolsky (1996)
also considered cyclical selection for many loci of
equal effect assisted by mutation flow as a mechanism
of polymorphism maintenance. It is not known,
however, whether polymorphism will be protected in
an analogous mutation-free system. Our recent
simulations showed that the proposed earlier mechan-
isms of polymorphism maintenance in infinite
populations due to non-equal gene effects or
semi-dominance may help in long-term polymor-
phism maintenance at many loci in finite populations
as well (Nevo et al., 1997).

The results obtained in these studies demonstrate a
remarkable property of cyclical selection concerning
the conditions of polymorphism maintenance: the
realistic patterns in nature, i.e. non-equal effects and
deviation from purely additive within-locus scheme of
gene action, appear to promote polymorphism. Either
of these two conditions is an important component of
polymorphism protection in the considered model,
otherwise cyclical selection is unable to maintain
polymorphism at any selection stringency and
tightness of linkage with an exception of some special
cases (for two locus analysis see: Kirzhner et al.,
1995a; Korol et al., 1996).

Consequently, it may be of general interest to
consider in more detail the unusual form of
polymorphism existence referred to as ‘‘complex
limiting behaviour’’ (CLB) that was revealed in our
previous paper (Kirzhner et al., 1996). Here we will:
(a) present a wide spectrum of selection models and
genomic configurations of the selected loci (their
chromosome distribution) compatible with CLB; and
(b) analyse the robustness of CLB with respect to
disturbances in the period length, selected trait values,
and haplotype frequencies.

2. The Model

We examine the behaviour of an infinite population
with panmixia, non-overlapping generations, and
several linked diallelic loci, Ai /ai (i=1, . . . , L)
affecting the selected trait, u. Consider a genotype g
with u= u(g) defined as: u(g)=sS

i
ui (g), where the

effect of the ith locus of the genotype g is specified as:

ui (g)=
di ,

0.5 di (1+ hi ),
0,

for AiAi

for Aiai ,
for aiai .

(di q 0)

Clearly, this scheme describes additive control of the
selected trait u across loci with an arbitrary level of
dominance within loci. For cyclical selection, the

fitness wt (u) of a genotype with trait value u at the
environmental state t is defined by the fitness function

wt (u(g))=F(u(g)− zt ),

where zt is the trait optimum selected for at the
moment t. For example one can use
F(u(g)− zt )= exp4−[u(g)− zt ]2/s25, a fitness func-
tion which is widespread in population genetics.

The evolutionary equations for the environmental
state t can be written in the standard form:

x'm = s
ij

wt (u(gij ))Pij,mxixj /W, (1)

where x and x' are gamete frequencies in adjacent
generations; W is the mean fitness; Pij,m e 0 is the
probability of producing gamete m by a heterozygote
gij that resulted from union of gametes i and j,
S
m
Pij,m =1. The frequency Pij,m of haplotype m can

easily be calculated as a sum of the frequencies of
elementary events resulting in its appearance from the
zygote gij .

The above system was studied numerically, under
different types of cyclical selection regimes, con-
ditioned by an ordered set 4z1=n1, z2=n2, . . . , zq =nq5,
where zt is the selected optimum at the tth
environmental state, nt is the longitude of the tth
state, and p= n1 + n2 + · · · +nq is the period length.

3. Results: Selection Models (Modes) Resulting
in CLB

Earlier we showed that a broad spectrum of CLB
modes could be obtained with cyclical diploid
selection for a trait controlled by a block of few (e.g.
four) linked loci (Kirzhner et al., 1996). Besides, CLB
regimes were found in haploid two locus systems with
cyclical selection and special fitness matrices (Kirzh-
ner et al., 1994). The objective of this paper is to show
that stabilizing selection with cyclically varying
optimum generates CLB in either diploid or haploid
systems with different configurations of the selected
loci (according to their chromosome distribution). We
will demonstrate, that these movements are quite
resistant to different types of disturbances. Our other
goal here is to provide a kind of an ‘‘anthology’’ of
CLB modes generated within a class of simple natural
models of cyclical selection for a multilocus selected
trait (we confine the analysis to four loci).

3.1.      

- 

For the case of purely additive loci only unequal
effects of the participating loci were considered,
because with additive loci of equal effects poly-
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morphism cannot be maintained for ‘‘usual’’ fitness
functions (like Gaussian or quadratic parabola)
(Gavrilets & Hastings, 1994b; Korol et al., 1994,
1996). In Fig. 1 we demonstrate a spectrum of CLBs
for three types of positioning of selected loci: a block

of four linked loci [Fig. 1(a–d)], two unlinked blocks,
each consisting of two linked loci (Fig. 1(e, f)], and
four unlinked loci [Fig. 1(h)]. Beside four-locus
systems [Fig. 1(a–h)], examples with three and six loci
are presented as well [Fig. 1(i, j)].

F. 1. Complex population trajectories caused by cyclical diploid selection for a trait controlled by four additive loci with unequal effects.
Here and in all other figures, the points representing the system phase state (allele frequencies at two out of the four loci) are sampled
only at time multipliers of the environmental period length p. Thus, a full cycle of the environment is marked by the end-point of the
period. The haplotype frequencies at the initial points of the trajectories will be presented below (if necessary) in the following order (1111,
1011, 0111, 0011, 1101, 1001, 0101, 0001, 1110, 1010, 0110, 0010, 1100, 1000, 0100, 0000), where 1 or 0 at position i (i=1, . . . , 4) stands
for Ai or ai , respectively. The intial points here and in the subsequent figures correspond to z= z1 and are given with an accuracy to a
normalizing constant (i.e. the presented coordinates should be divided by their sum). Figures (a–h) correspond to four-locus systems:
(a–d)—a single linkage group; (e) and (f)—two unlinked blocks each with two linked loci, (h)—four unlinked loci; (i) and (j) correspond
to systems with three and six linked loci, respectively. In all cases the simple period structure n1 =1, n2 =0, n3 =1 was employed. (a) A
simple supercycle: s=2.0, r=0.3, d1 =3.4, d2 =1.6, d3 =0.4, d4 =0.1; z1 =11, z3 =0. Note the wide range of changes of allele frequencies
along the supercycle; the scaled linkage disequilibria D'ij between the neibouring loci at the environmental state 2 varied along the supercycle
in the range 0.06–0.43, 0.08–0.002, and 0.002–0.001 for D'12, D'23, and D'34, correspondingly. (b) A complex two-component supercycle:
s=0.42, r=0.045, d1 =1.0, d2 = d3 = d4 =0.3; z1 =3.8, z3 =0. This cycle consists of two parts. With some changes in the model
parameters we can split this CLB into two separate cycles or to obtain one central cycle. The scaled linkage disequilibria D'ij between the
neibouring loci at the environmental state 2 varied along the supercycle in the range 0.01–0.40, 0.03–0.35, and 0.02–0.21 for D'12, D'23, and
D'34, correspondingly. (c) Non-cyclical complex trajectory. The parameter values used here were: d1 =2.3, d2 =1.8, d3 =1.6, d4 =1.2,
s=1.85, r=0.012, z1 =16.8, z2 =−3. The initial point in the presented trajectory was (.001855 .000000 .061224 .005566 .064935 .038961
.098330 .035251 .129870 .174397 .050093 .081633 .018553 .128015 .103896 .007421). (d) The same system as in Fig. 1(c) is presented here,
but projected to another plane. (e) A supercycle in a system with two linked blocks: (1,2) and (3,4); s=2.3, r=0.1, d1 =0.5, d2 =1.6,
d3 =4.4, d4 =1.1; z1 =15.2, z3 =0. The scaled linkage disequilibria D'ij between the neibouring loci at the environmental state 2 varied
along the supercycle in the range 0.001–0.10, 0.01–0.25, and 0.01–0.50 for D'12, D'23, and D'34, correspondingly. (f) A complex attractor for
a system with two linked blocks: (1,2) and (3,4); s=2.0, d1 =1.5, d2 =1.4, d3 =4.3, d4 =1.2. In the first block r= r1 =0.0136, in the second
r= r2 =0.1, z1 =16.9, z3 =−0.5. We show the part of the trajectory for 20,000 environmental periods (from 30,001 to 50,000). (g) The
set of parameters resulting in CLB. Here q characterizes the ratios of the individual loci effects; r=0.1 was taken in the simulations, but
a close pattern was obtained up to r=0.3. (h) A fragment of a trajectory converging to a simple supercycle in a system with four unlinked
loci: s=1.65, d1 =0.1, d2 =0.4, d3 =1.6, d4 =4.4, z1 =13, z3 =0. (i) A simple supercycle in a model with three linked loci: s=0.25,
r=0.33; d1 =0.1, d2 =0.4, d3 =0.2, d4 =0.0, z1 =1.45, z3 =0.15. (j) A simple supercycle in a model with six linked loci: s=0.41, r=0.1;
d1 =0.01, d2 =0.02, d3 =0.06, d4 =0.14, d5 =0.33, d6 =0.80, z1 =2.72, z3 =0.
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Figure 1(a) demonstrates a simple supercycle with
a wide range of changes in the phase parameters along
the trajectory. It would be of great interest to
understand the nature of this CLB. We found that
this cycle can be obtained by varying the bifurcation
parameter r (recombination rate). With r=0.14 we
have a stable polymorphic point. Numerical analysis
of the Jacobian of the transformation (1), iterated
over the environmental period, has shown the
existence of an eigenvalue 0.99732 0.0221i, the
remainder elements of the spectrum being real.
Theoretically, it means that a cyclical movement with
a period of about 280 environmental periods can be
obtained. In fact, a result close to this prediction was
observed at r=0.3: a supercycle with period length of
270, that is presented in Fig. 1(a). The more complex
supercycle of Fig. 1(b) consists of two-dimensional
components that lie in different planes, with two
alternative sets of three-to-four haplotypes predomi-
nating in the population. With an exception of a small
domain close to the border set, any arbitrary initial
point results in a trajectory that converges to this
supercycle. Moreover, this system manifests also a
rather high parametric stability. Thus, within a
certain range of variation in selection intensities and
recombination rates, the majority of trajectories
converge to CLB (e.g. this occurred in 50 cases from
50 random starts, for each of the following three sets:
s=0.3 and 0.1 Q rQ 0.5; s=0.4 and 0.1 Q rQ 0.4;
and s=0.5 and 0.2Q rQ 0.3).

A complex non-cyclical trajectory is presented in
Fig. 1(c). This limiting chaotic-like motion belongs to
an eight-dimensional plane. A small perturbation of
the coordinates of the initial point leads to an
increasing divergence over time of the resulting
trajectory as compared to the initial (non-disturbed)
trajectory. Some other two-dimensional projections
could be found where the trajectories look like a
chaotic attractor. Figure 1(d) displays two domains of
attraction; consequent switching of the trajectory
between these domains appears to be non-regular and
reminds of the classical Lorenz attractor. Two
unlinked blocks of genes can also produce chaotic-
like behaviour as illustrated in Fig. 1(f). For the last
example we also have attempted to represent the
appearance of the CLB as a result of bifurcation a
polymorphic fixed point caused by change in
bifurcation parameter s (the presented CLB was
obtained at s=2.0 whereas s=1.75 results in a stable
polymorphic point). Noteworthy, that the spectrum
of linear approximation at this point contains three
complex eigenvalues. The last peculiarity may be an
indicator of the system’s ability to manifest complex
behaviour after loosing the stability of the fixed point.

It would be of great interest to know more on how
generic the CLB phenomenon for diploid models is
with non-equal additive genes subjected to cyclical
selection. In light of this question, we have evaluated
the proportion of CLB-manifesting systems in a
special subset of systems with non-equal effects.
Namely, consider a system of four linked additive
genes, and let the effects of genes be in a progression
1:q:q2:q3. For each chosen rate of recombination (r)
we evaluated the set of (s, q)-pairs resulting in CLB
in at least one of 10 random starts, when the system
was subjected to a cyclical selection regime with
period 1:1 (e.g. n1 = n3 =1, and n2 =0) and the
selected trait values were m1 =2(1+ q+ q2 + q3) and
m3 =0. It appears, that at least for the considered
sub-class of systems with additive gene action, CLB
is not a rare phenomenon [Fig. 1(g)].

The next group of questions concerns the stability
of CLB to random fluctuations of parameters
characterizing the environment. We examined two
aspects: changes in selected optimum trait values and
changes in the period length (Fig. 2). Cyclical
selection with a basically two-state environment was
considered. The first question is the effect of random
fluctuations of the optimum values of the trait. As
before, the period structure is 1:1, but the
deterministic selected value z1 is replaced by an evenly
distributed random variable with mean value z1. In
our example [Fig. 2(a–c)], the maximum of the
spectral densities of the resulting (‘‘disturbed’’)
trajectories is close to that of the undisturbed system.
Similar results were obtained when the period itself is
randomly disturbed [Fig. 2(d–f)]. In this case the
values z1 and z3 are deterministic, but the ratio 1:1 of
the period structure is stochastically changing to 2:1
or 1:2 or 2:2 with some probabilities. As can be seen
from the presented examples, CLB is quite resistant
to such interruptions, if their frequency is not too
large.

3.2.      

- 

Clearly, considering fluctuating selection (temporal
or spatial) is of special interest for haploid selection
models, as the simplest mechanism of polymorphism
maintenance in such systems (Kirzhner et al., 1995a).
As applied to our subject (complex limiting
behaviour), haploid population models provide a
unique opportunity to exclude any hidden causal
effect of heterozygosity. Actually, the first examples of
this type were found earlier, but not in the framework
of cyclical selection for an additively controlled trait
(Kirzhner et al., 1994).
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F. 2. Changes in spectral densities of supercyclical movements in two systems with additive loci caused by random disturbances of
environmental parameters. I. Random variations of z1 for a selected system with four linked additive loci with s=0.425, r=0.007; d1 =1,
d2 = d3 = d4 =0.3; n1 =1, n2 =0, n3 =1, z1 =3.8, z3 =0; (a) undisturbed process, (b) 10% range of variation, (c) 50% range of variation.
II. Random variations of period length for a selected system with four unlinked additive loci with effects d1 =0.1, d2 =0.4, d3 =1.6, d4 =4.4;
s=1.65; n1 =1, n2 =0, n3 =1; z1 =13, and z3 =0 [see Fig. 1(h)]; (d) undisturbed process, (e) with a probability of p=0.1 along the
trajectory, n1 or n2 become independently equal to 2; (f) the same as (b) but p=0.15.

In Fig. 3(a) we demonstrate a supercycle in a
system with four equally spaced closely linked loci.
This is an example of CLB caused by alternating
variations in the selected trait value. In our previous
example of supercyclical oscillations in haploid two
locus systems (Kirzhner et al., 1994) the structure of
the environmental period was rather complex, and
only damping autooscillations were observed upon

simple period structure. Allowing for non-equal
lengths of adjacent chromosomal intervals results in
a more complicated set of limiting trajectories. For
example, we obtained two stable supercycles (one
included in the other), as shown in Fig. 3(b). Figure
3(c) demonstrates a supercycle in a system with two
unlinked two-locus blocks. In contrast to diploid
selection, no examples of CLB were found for four

F. 3. Supercycles caused by cyclical haploid selection for a trait controlled by four additive loci with unequal effects. (a) A simple
supercycle in a system with four linked loci; s=0.167, r=0.007; d1 =0.18, d2 =0.1, d3 =0.17, d4 =0.23; n1 =3, n2 =0, n3 =3; z1 =0.846,
z3 =−0.15. (b) Two stable supercycles in a system with two loosely linked blocks (r2 =0.4) each consisting of two tightly linked loci
(r1 = r3 =0.0012); s=0.125; d1 =0.12, d2 =0.16, d3 =0.18, d4 =0.23; n1 =3, n2 =0, n3 =3; z1 =1.04, z3 =−0.20. (c) A supercycle in a
system with two unlinked blocks each consisting of two tightly linked loci; s=0.15, r=0.0012; d1 =0.12, d2 =0.16, d3 =0.18, d4 =0.23;
n1 =3, n2 =0, n3 =3; z1 =1.04, z3 =−0.18. (d) A complex supercycle in a system with four linked loci: s=0.0725, r=0.002; d1 =0.18,
d2 =0.1, d3 =0.17, d4 =0.23; n1 =1, n2 =0, n3 =1; z1 =0.35, z3 =−0.005.
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F. 4. Complex trajectories caused by cyclical selection for a trait controlled by four (semi)dominant loci. (a) A simple supercycle:
s=0.86, r=0.026; d1 = d2 = d3 = d4 =1, h1 =0.15, h2 =0.35, h3 =0.40, h4 =0.40; n1 =2, n2 =0, n3 =1; z1 =3.0, z3 =0. (b) Chaotic-like
behaviour: s=0.5, r=0.03, z1 =4.0, z2 =2.2, z3 =0.1, h1 = h2 = h3 = h4 =0.5, n1 =2, n2 =2, n3 =2. The conclusion about chaotic-like
regime is derived from the known criterion of trajectory divergence caused by perturbation of the initial point. The initial point in the
presented trajectory was (.000 .000 .000 .001 .000 .001 .013 .331 .000 .000 .002 .180 .001 .075 .388 .008). The range of r resulting in CLB
was [0.01–0.05]. Within this range, T-supercycles were also observed. (c) Bifurcation diagram for the example (b) with r taken as bifurcation
parameter. The initial point was (.000000 .000000 .00000 .000010 .000013 .000000 .358222 .000000 .000010 .000000 .275081 .000000
.0.000016). (d) A complex attractor for a sytem with four linked loci; s=0.89, r=0.079; d1 = d2 = d3 = d4 =1; h1 =0.16, h2 =0.34,
h3 =0.34, h4 =0.38; n1 =2, n2 =0, n3 =1; z1 =3.0, z3 =0. We show the part of the trajectory for 20,000 environmental periods (from
20,001 to 40,000). (e) Two ‘‘twin’’ supercycles in a system with dominance varying across environments: s=0.4, r=0.015, hi =−0.7 or
0.7, for the environmental states with z1 =4.04, z3 =−1.0, respectively; n1 =1, n2 =0, n3 =3. Starting from two different points (A and
B) we found two symmetrical trajectories: A=(.908 .008 .002 .006 .008 .006 .001 .005 .008 .008 .007 .006 .005 .009 .009); B=(.007 .002
.003 .008 .002 .005 .005 .935 .005 .002 .002 .004 .008 .003 .007). (f) A simple supercycle in a system with two unlinked blocks of linked
genes: n1 = n3 =1, n2 =0. z1 =3.7, z3 =−0.2. s=0.75, r=0.001. h1 =0.48, h2 =−0.27, h3 =0.22, h4 =−0.5; the initial points were (.002
.000 .061 .005 .065 .039 .098 .035 .130 .170 .050 .082 .019 .128 .104 .007).

unlinked loci under haploid selection regimes. An
important fact is that cyclical haploid selection may
also produce more complex behavioural patterns.
One such example is presented in Fig. 3(d). In spite
of its quite complex pattern, the presented attractor
is close to a cycle, however trajectories with close
starting points tend to diverge with time.

3.3.    - 

We consider here the same model, but assume that
the selected trait is controlled by semi-dominant loci
(hi $ 0) with equal effects. The main difference of the
regimes produced by this assumption is that
T-supercycles (i.e. short supercycles with exact repeat
of the phase states after T environmental periods) and
chaotic-like behaviour are the common modes of the
manifested CLB (Fig. 4). As before, more than one
mode of CLB can be manifested by one system,
depending on the initial point.

Figure 4(a) represents a simple supercycle, whereas
an example of a complex chaotic-like attractor is

given in Fig. 4(b). The bifurcation diagram of the
latter (with recombination rate taken as the
bifurcation parameter) consists of a series of
transformations of chaotic-like behaviour into T-su-
percycles and backward. A complex non-cyclical
(non-converging) trajectory is shown in Fig. 4(d). It
is noteworthy, that the volume of attraction of these
CLBs (the proportion of initial points resulting in
such trajectories) is quite high, approaching 50–90%.
From the biological point of view, it is interesting that
the range of changes in the phase parameters (allele
frequencies) along the trajectories is also quite wide.
Figure 4(e) shows two trajectories corresponding to
two nice symmetrical supercycles. This behaviour was
found in a system with dominance varying across
environments, a temporal analogue of Gillespie’s
(1978) model with spatially varying environment. The
last example in Fig. 4(f) represents a situation with
stable (unchanging) dominance in a system with two
unlinked blocks each consisting of two tightly linked
loci. Our trials to make the next step, with four
unlinked loci, failed to reveal any CLB.
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Consider now the question of stability of CLB to
random fluctuations. As for the model with unequal
additive genes, we analysed the effect of random
fluctuations of the modal values of the selected trait.
The deterministic selected value z1 was replaced by
evenly distributed random variable with mean value
z1. One can easily see (Fig. 5) that with moderate
deviations from the mean z1 (up to 25% of the initial
deterministic value of z1), the resulting movement
preserves to a large extent the behavioural mode
characteristic to the non-disturbed deterministic
system [compare Fig. 5(a) and (b) for both model
systems, I and II]. The same conclusion was reached
with respect to disturbances caused by random
fluctuations of the period length [compare Fig. 5(a)
and (c) for both models]. Therefore, we can conclude,
that CLB manifest certain robustness with respect to
moderate random disturbances of selection regime.

Of special separate interest is the question of
stability of CLB to random drift caused by finite
population size. In contrast to the foregoing examples
of stability against random disturbances of model
parameters, introduction of fluctuations caused by
finite population size means actually a change in the
basic model. We consider this question using as an

example a model with three semidominant loci. In
order to analyse the robustness of CLB to finite
population size, the following procedure was em-
ployed: at each generation, the vector of haplotype
frequencies was disturbed by a vector of ‘‘sampling
errors’’ with the coordinates simulated as random
normal variables with zero expectations and variances
equal to d2(xi )= xi (1− xi )/N, where N is the
‘‘simulated’’ population size. Another approach to
simulate a finite population size was an introduction
of minimal haplotype frequency border xo, so that
at any generation any haplotype frequency that
appeared to be less than xo, is replaced by zero.
Figure 6 illustrates the results. As one can see, for the
considered example, population sizes from N=5000
and higher display the same pattern of CLB as the
non-disturbed (infinite) population. An interesting
phenomenon is that the finite population manifests
simultaneously both CLBs to which the infinite
population converges alternatively, i.e. when starting
from different initial points. Clearly, the last
phenomenon is possible due to random fluctuations
of the trajectory that allow it to appear alternatively
in the domain of attraction of each of the CLBs. With
increasing N, this effect disappears, and the trajectory

F. 5. Changes in phase diagrams of supercyclical movements in two systems with dominant loci caused by random disturbances of
environmental parameters. (a) Undisturbed process—T-supercycle in selected system with four linked additive loci with s=0.7, r=0.05;
d1 = d2 = d3 = d4 =1.0; h1 = h2 = h3 = h4 =0.5, n1 = n2 = n3 =2, z1 =4.0, z2 =2.4, z3 =0; (b) Random variations of z1 (range 25%); (c)
Random variations of period length: with a probability of D=0.5 along the trajectory, n1, n2 or n3 become independently equal to 1. (d)
Undisturbed process—a simple supercycle in selected system with four linked semidominant loci with effects s=1.2, r=0.006;
d1 = d2 = d3 = d4 =1.0; h1 = h2 = h3 =0.18, h4 =−0.5; n1 = n3 =1, n2 =0, z1 =3.04, z3 =0.2. (e) Random variations of z1 (range 25%).
(f) Random variations of period length: with a probability of D=0.1 along the trajectory, n1, or n3 become independently equal to 2.
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F. 6. Changes in phase diagrams of supercyclical movements
in a system with three semi-dominant loci caused by genetic drift.
(a) Two limiting supercyclical trajectories in the undisturbed
(infinite) population corresponding to different sets of initial points:
s=0.84, r=0.02; d1 = d2 = d3 = d4 =1.0; h1 = h2 =0.15,
h3 =−0.195; n1 = n3 =1, n2 =0, z1 =3.3, z3 =0.3. It is notewor-
thy, that the size of the attraction domain of cycle 1 is several times
larger than that of cycle 2. (b) The trajectory of the system with
random disturbances of the haplotype frequencies simulating the
effect of drift with population size N=5000; (c) the trajectory of
the system with random disturbances of the haplotype frequencies
simulating the effect of drift with population size N=10000; (d)
the limiting set of system’s trajectories with a minimal border of
haplotype frequencies: at each generation all haplotype frequencies
with a value less than xo =0.001 were replaced by zero.

of genotype-environmental interaction allows to
show the possibility of polymorphism maintenance
(Gillespie & Turelli, 1989).

Our recent studies address this problem when no
limitation of loose linkage or weak selection is
accepted (Kirzhner et al., 1995a; Korol et al., 1994,
1996). It was shown that stabilizing selection with
cyclically moving optimum may produce abundant
polymorphisms when the selected trait is controlled
by additive loci with non-equal effects or by
semidominant loci. Moreover, the fact of polymor-
phism maintenance for non-equal loci appeared to be
true for cyclical selection of two-locus haploid
systems (Kirzhner et al., 1995a) where constant
selection was proved to lead to fixation (Rutschman,
1994). Likewise, in our diploid cyclical selection
models, numerous examples were found where
polymorphism maintenance under cyclical selection
regime is not a phenomenon reminiscent of the
constant environment (Korol et al., 1996).

Clearly, environmentally determined cyclical selec-
tion may result in fixation or in forced oscillation of
the population genetic structure with a period equal
to that of the environmental changes. In this paper we
report an abundance of additional modes of
behaviour manifested by multilocus systems subjected
to cyclical selection: (a) supercycles (autooscillations,
with a period comprising sometimes dozens or
hundreds of external periods), and (b) more complex
limiting behaviour (a broad spectrum of chaotic-like
trajectories). Classical population genetic models
resulting in complex behaviour include, as a rule,
some forms of frequency- or density-dependent
selection (May & Anderson, 1983; Preygel & Korol,
1990; Altenberg, 1991; Korol et al., 1994). These
models directly or indirectly involve an ecological
component. By contrast, in our current model of
cyclical selection the coefficients in the evolutionary
operator do not depend on the systems’ phase
variables. The selection model considered in this
paper is a standard one in population genetics (e.g.
Hastings & Hom, 1990; Nagylaki, 1992; Maynard
Smith, 1988). Nevertheless, it manifests en mass
earlier undetected complex dynamic patterns.

Constant selection at single locus level, as well as
multilocus selection-free regimes, cannot produce by
themselves complex limiting population genetic
behaviour (CLB) with an attracting set of a trajectory
consisting of more than one point (Geiringer, 1949;
Lyubich, 1971; Kirzhner & Lyubich, 1974; Lyubich et
al., 1976; Lyubich, 1992). In a continuous two-locus
model of constant selection, Akin (1983) found some
domains of parameter values which can result in
autooscillations. Hastings (1981) constructed an

becomes associated with only one of the possible
CLBs.

Discussion

Temporal environmental fluctuations has for a long
time attracted much attention as a factor of
polymorphism maintenance. Theoretical analysis of
single-locus models has delimited the conditions of
polymorphism (Haldane & Jayakar, 1963; Ewing,
1979; Maynard Smith & Hoekstra, 1980). Much less
progress was attained for multilocus systems, due to
technical difficulties. Consequently, several attempts
were undertaken to analyse the multilocus problem
under some simplified conditions. These include the
assumptions of weak selection and/or loose linkage
between the selected loci leading to negligible linkage
disequilibria. It was found that under these circum-
stances, varying optimum of the selected trait does
not affect the amount of the maintained genetic
variation (Lande, 1976). The same assumption of
no linkage disequilibria, considered within the
framework of the SAS-CFF model (Gillespie, 1978)
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example demonstrating CLB in a two locus
discrete-time model. Thus, constant selection can
produce CLB in population genetic systems, but only
in exceptional cases.

As compared to our recent results (Kirzhner et al.,
1996), we describe here a rather wide spectrum of
systems with cyclical selection that manifest CLB.
These include: haploid and diploid selection for
non-equal additive loci, diploid selection for semi-
dominant loci including environmental-independent
dominance and dominance mode dependent on
environment [like in the spatial model of Gillespie
(1978)], and several types of genomic distribution of
selected loci (a block of tightly linked loci, several
such unlinked blocks, and a series of independently
segregating loci). Altogether, the analysed examples
include systems from three to six loci. All these
systems appeared to manifest abundant CLB for a
range of the model parameters (recombination rates,
individual effects of the involved loci on the selected
trait, and dominance effects of the selected loci).
Nevertheless, not all combinations of the foregoing
types did so (e.g. no such example was found with
haploid selection for four unlinked loci). The
availability of a broad spectrum of systems manifest-
ing CLB allowed us to check whether these systems
share some common features not characteristic in
those which do not manifest such behaviour.
Although we are quite far from a comprehensive
answer to this question, two features may be
mentioned here: strong selection and substantial
linkage disequilibria. Two features which were exactly
opposite to these were assumed in the first multilocus
models with temporarily fluctuating environments
(e.g. Lande, 1976; Gillespie & Turelli, 1989).

Due to the environmental initiative of the revealed
unusual dynamic patterns, it was of primary interest
to check whether CLBs are robust to disturbances in
the parameters characterizing the environmental
variation, e.g. of the optimal values of the selected
trait along the period, or the period length. The
answer is positive, that is, the revealed supercyclical
movements are, to some extent, resistant to such
disturbances. We also answer positively to another
related question, concerning resistance of CLB to
random drift: the simulations showed that to a certain
extent CLBs are robust to fluctuations caused by
finite population size,

The results of this research program reveal a new
broad class of relatively simple genetic systems
manifesting extremely complex dynamic patterns.
This may have important consequences for evolution-
ary theory, showing that complex behaviour may
arise even in single species genetic systems without

frequency and/or density dependent selection. In
particular, this precludes any attempts to find the
‘‘target’’ for multilocus cyclical selection (optimiz-
ation criterion) for any pattern of genomic distri-
bution of the selected loci (i.e. the existence of CLB
means non-existence of a global Lyapunov function
even when calculated over periods).

The biological relevance of the findings presented in
this paper depends on (i) how real the parameter sets
are which result in CLB, and (ii) whether the required
strength of selection and resulting mean fitness are
compatible with the reproductive capabilities of real
populations. Both questions can be answered
positively. The range of ratios of gene effects,
dominance ratios, and rates of recombination in our
numerical examples seem to be quite realistic.

More complex is the question of mean fitness. It
appeared that in case of purely additive non-equal
genes, very low mean fitness is characteristic of the
complex trajectories. However, in case of dominant
gene action, a significant part of situations with CLB
lies in the fitness range of 0.1–0.3. Moreover, for the
class of more realistic models, with the selected trait
being controlled by semidominant genes with
non-equal effects, it is easy to find CLB regimes with
rather high mean fitness, up to 0.4–0.6, which is
compatible even with the relatively low reproductive
capacities of many reptiles, birds, and mammals, let
alone organismal groups with higher reproduction
rates, i.e. most living organisms. An example of a
supercycle with quite a high mean fitness (at any
generation) is provided in Fig. 7(a). Here the mean

F. 7. Supercycle caused by cyclical diploid selection for a trait
controlled by four linked semidominant loci with unequal effects.
(a) Stable supercyclical autooscillations in the system with
r=0.005; s=0.40, d1 =0.1, d2 =0.2, d3 =0.3, d4 =0.4; h1 =0,
h2 =1, h3 =0, h4 =1, n1 = n3 =1, n3 =0, z1 =0.75, z3 =−0.005.
(b) Damping oscillations (convergence to a polymorphic fixed
point) in the same system with no recombination (r=0). The
spectrum of linear approximation at this fixed point includes a
complex eigenvalue 0.9977 2 0.0445i, that corresponds to oscil-
lations with a period of about 140 units (environmental cycles)
whereas the observed period [see Fig. 7(a)] was about 170 units.
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fitness along the whole supercycle varies in the range
0.39–0.41 at either of the environmental stages.
Corresponding changes in linkage disequilibrium D'ij
[scaled on products of allele frequencies (piqipjqj )1/2,
where pm and qm are allele frequencies at mth locus
(m= i, j )] are of interest. For a four-locus situation
one may consider 6 D’s, but we present only those for
neighbouring loci, D'12, D'23, D'34. In the foregoing
example, the range of variation of these coefficients
was: (a) in state 1: 0.01–0.01, 0.52–0.68, and
0.27–0.50, respectively, and (b) in state 2: 0.07–0.33,
0.34–0.57, and 0.43–0.60.

Ford (1971) was among the first who demonstrated
that strong selection may be a common phenomenon
in nature. Moreover, the whole concept of the
evolution of co-adapted blocks of genes is based on
the assumption that strong selection and tight linkage
are the major factors maintaining these blocks intact
(e.g. Darlington, 1971). Many examples of polymor-
phic co-adapted gene blocks are well known [reviewed
in Ford (1971), Darlington (1971), Clegg et al. (1978)
and Korol et al. (1994)]. Clearly, if the question is the
polymorphism maintenance itself, the requirements to
the stringency of selection can be significantly reduced
[see an example of cyclical selection on p. 1438 in
Korol et al. (1996), where the geometric mean fitness
was W=0.80, with a nearly global stability of the
polymorphism]. The number of such examples can
easily be increased. However, if the question is
preservation of linkage disequilibrium in a polymor-
phic population, then higher selection intensities are
generally required. And finally, existence of polymor-
phism in the form of CLB requires an even stronger
selection. As we could see from the presented
examples of CLB [e.g. Fig. 1(a), (b) and (e)], varying
along the trajectories linkage disequilibrium is a
characteristic feature of CLB. It is noteworthy, that
in case of non-equal linked loci [Fig. 1(a)] the highest
disequilibria are characteristic to strongest loci; this
note is also true for the case of two unlinked blocks
[Fig. 1(e)]. It is also worth mentioning the existence
of linkage disequilibrium between the unlinked
blocks.

The revealed phenomenon of complex limiting
behaviour caused by simple cyclical selection might be
considered a novel evolutionary mechanism that can
assist, in combination with mutation, in long-term
maintenance of genetic variation. Thus, it can
substantially contribute to the standing biodiversity
over evolutionary time.
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