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This paper deals with the problem of polymorphism maintenance in species coevolution
mediated by selection for quantitative traits controlled by Mendelian genes. We showed here
that the conditions for polymorphism maintenance in interacting species can be deduced from
the behavior of the isolated partners in stable and changing environments. This allows also
to address such difficult questions as evolution of sex and recombination, that can not be
considered properly in non-Mendelian models. An abundance of polymorphic regimes was
revealed in the proposed genetic model. The obtained results demonstrate a remarkable
property of trait-dependent coevolution concerning the conditions for maintenance of genetic
polymorphism: what seems to be more realistic, that is, non-equal gene effects and deviation
from purely additive within-locus gene action, promotes polymorphism.
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1. Introduction

Theoretical ecology is rich in models of the
dynamics of multispecies communities. But what
about genetic evolution of the species within the
communities? This is an extremely challenging
and complex problem and hence, from an
evolutionary perspective, relatively little effort
has been invested in the analysis of complex
multispecies interactions influenced by multiple
genes. The fact that species evolution is directed
by both abiotic and biotic factors makes this
poorly studied problem a primary target for
evolutionary theory. A genetic perspective is
essential for ecological theory: even qualitative
features of community dynamics may crucially
depend on the population genetic structure of the
participating species. Here we analyse a key

factor underpinning evolutionary biology,
namely, the maintenance of polymorphism result-
ing from genetic interactions of species, which
are governed by mutual selection for additively
controlled quantitative traits.

Attempts to specify and model interactions
between species at the genotype level inevitably
encounter difficulties associated with a great
number of genotypes involved. For example,
complex genetic systems control the relation-
ships between plants and their pests and
pathogens (Burdon, 1987; Frank, 1994a). Even
more elaborate are the polymorphic systems
determining resistance and virulence in animals
(especially vertebrates) and their parasites (May
& Anderson, 1983; Hamilton, 1990). ‘‘Gene-
for-gene’’ (G&G) interactions are the best
known example of antagonistic relationships
(Vanderplank, 1978; Bell & Maynard Smith,
1987; Thompson & Burdon, 1992). However,
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less specific interactions are also known, like
those characterizing durable polygenic, or
horizontal, resistance of plants to pathogens;
these are of great evolutionary and agricultural
importance (Thompson & Burdon, 1992). Such
interactions can be formalized in terms of
‘‘trait-for-trait’’ (T&T) models and may also be
characteristic for other interacting communities
such as ‘‘predator–prey’’, ‘‘several competitors
for a common limited resource’’, ‘‘plant–
pollinator systems’’, etc. Unfortunately, the
question of polymorphism maintenance in such
systems is quite difficult to analyse (Hamilton,
1990, 1993).

Several ecological–genetic models have been
proposed to analyse the coevolution of species
assuming heritable variation and evolution of
quantitative traits determining the species re-
lationships (Kiester et al., 1984; Abrams, 1986;
Saloniemi, 1993; Frank, 1994b; Dieckmann et
al., 1995; Gavrilets, 1997; Law et al., 1997).
However, when addressing such questions as
polymorphism maintenance, and especially, sex
and recombination evolution, direct genetic
(Mendelian) formulation becomes crucial. We
are familiar with only a few attempts of
multilocus genetic modelling of T&T inter-
specific interaction (Hamilton, 1993; Preygel &
Korol, 1990; Korol et al., 1994; Doebeli,
1996a, b, 1997). Multilocus trait-based models
have also been used to analyse intraspecific
competition (Loeschcke & Christiansen, 1984;
Korol et al., 1994; Doebeli, 1996a, b). Here we
consider the conditions of polymorphism main-
tenance in a simple and natural class of T&T
multilocus models of species genetic interaction
allowing the modelling of multispecies communi-
ties.

2. The Model

Consider a community of q panmictic
populations (of diverse species) with non-over-
lapping generations. We assume that each
population can be characterized by a set of
quantitative traits that determine its interactions
with the remainder members of the community.
Let Zs be the vector of mean values of these traits
concerning selection pressure experienced by the
s-th population (s=1, . . ., q) from all others.

Then, the selection regime of the s-th population
can be defined by fitness function ws(Uj,Zs),
where Uj is the set of trait values of a genotype
j. We assume that each of the traits of the set U
is controlled by multiple loci with additive
(across loci) effects. This general scheme can be
easily implemented in the form of a computer
model for a system with a large enough number
of species and traits loci.

In this article we confine our analysis mainly
to the class of two-species communities (hence in
the T&T model the vectors Uj and Zs are reduced
to a single coordinate each). The species
interaction will be described by fitness functions
with arguments dependent on differences be-
tween the genotype’s trait value and mean value
of the corresponding trait of the partner
population. In our further numerical examples,
we will use fitness functions of Gaussian type.
Then, our system can be represented as

w1(u1j,z1)= exp4g1(u1j − z1)2/s2
15

and
w2(u2j,z2)= exp4g2(u2j − z2)2/s2

25. (1)

Here z1 is the selected for (the best) or selected
against (the worst) value of the trait u1 for
genotypes of the first population that depends on
(i.e. is equal to) the mean value of the
corresponding trait in the partner, and s2

1

determines the strength of selection. Conse-
quently, z2 is the selected (for or against) trait
value in the second population that depends on
(i.e. is equal to) the mean value of the partner.
The coefficients g1 and g2 could be equal to +1
or −1. If g1g2 Q 0 then the resulting system can
be referred to as the ‘‘host–parasite’’ type; the
case when both g1 and g2 are positive—as
competitive interaction, and when both g

negative—as mutualistic interaction.
We will consider mainly the situations when

the traits u1 and u2 in the model (1) are each
under two-locus control. This is in fact quite
close to some gene-for-gene situations already
treated (Hamilton et al., 1990; Hamilton, 1993)
and similar to one of two cases in Bell &
Maynard Smith (1987) (see also Doebeli,
1996a, b; Haraguchi & Sasaki, 1996). It is
noteworthy that the two-locus case includes the
main parameters of the multilocus system and is
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easier for analysis. But the two-locus assumption
is not a real constraint in our model: any number
of loci can be considered, at least in the form of
a computer model. To illustrate how natural is
the proposed formalization as applied to more
complex ecological–genetic situations, an
example of a three-species system will also be
provided which amounts to eight loci (Fig. 4).

The current state Xs of the population s (s=1,
. . ., q) can be characterized by its two-locus
haplotype frequencies Xs =(xab,xaB,xAb,xAB )s =
(xs1,xs2,xs3,xs4). A sequence of states
4Xs(n)5= 4Xs(1), Xs(2), . . .5 will be referred to as
a population trajectory. We employ standard
equations of population genetics to describe the
population dynamics (Nagylaki, 1992):

xsi(n+1)= [Wsixsi(n)+ oirsDs(n)]/Ws(n),

i=1, . . ., 4 (2)

where Ds (n)= xs1(n)xs4(n)− xs2(n)xs3(n) is the
linkage disequilibrium coefficient, rs—the recom-
bination rate; o1,o4 =−1 and o2,o3 =1; Ws(n) is
the mean fitness in generation n, whereas Wsi is
the marginal fitness of i-th haplotype:

Wsi =ajws[usij,ms(n)]xsj.

The genotypic values of the selected trait u are
defined as:

where m is the mean value of the trait, d are the
additive effects of the involved loci and h are the
dominance effects.

3. Polymorphism Maintenance in Interacting
Populations

Our aim is to demonstrate that T&T
interaction is capable of producing abundant
polymorphisms. Clearly, two forms of polymor-
phism maintenance should be considered: (a)
stable polymorphic fixed points, and (b) ‘‘dy-
namic’’ polymorphism existing in a form of
complex limiting behavior (like limit cycles,
chaos, etc.). Consequently, we will analyse the

conditions that can result in either of these
dynamic modes.

3.1.    

Clear criteria for existence of an interior
(polymorphic) fixed point for a pair of
interacting species can be formulated. Let us
denote such a fixed point (if it exists) as
X=(X1,X2), where X1 and X2 stand for the
corresponding fixed points in the two species. Let
z1 = z(X1) and z2 = z(X2) be the mean values of
the selected traits at X1 and X2. According to the
foregoing description of species interaction, this
actually implies that the dynamic equation (2)
for the first population has a fixed point X1 in a
constant environment with the selected ‘‘opti-
mum’’ z2. Likewise, this also implies that the
dynamic equation (2) for the second population
has a fixed point X2 in a constant environment
with the selected ‘‘optimum’’ z1. On the other
hand, if: (i) for the first population with the
selected ‘‘optimum’’ z2 a fixed point X1 exists and
z1 = z(X1), and (ii) for the second population
with the selected ‘‘optimum’’ z1 a fixed point X2

exists and z2 = z(X2), then the fixed point of the
interacting populations should also exist. There-
fore, for existence of an interior fixed point in a
system of two interacting populations it is
necessary and sufficient that each of the

populations have an interior fixed point that
obeys the conditions (i) and (ii).

It is worthwhile to complement this analysis
by the following comment. Let X1 be an interior
fixed point of the first population for some value
z2 of the selected ‘‘optimum’’ and let z(X1)= z1.
By changing consequently z2 we can obtain a
sequence of z1 values as a function of z2, i.e.
z1 = f(z2). Clearly, f(z) can be considered as a
continuous function if X1 varies continuously
with the selected ‘‘optimum’’. Noteworthy, for a
current value of z2 several fixed points could
exist, hence the function f(z) can be multiple-val-
ued. By analogy, we can obtain z2 =f(z1) for
the second population. Clearly, the conditions
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(i) and (ii) are equivalent to interception of the
curves f(z2) and f(z1). Noteworthy, from the fact
that the traits under consideration characterize
qualitatively different species, follows immedi-
ately the existence of a scale transformation, e.g.
like z : az+ b (any other transformation can
also be relevant either formally or biologically;
clearly, these transformations will affect the
stability of the fixed point). Therefore, if each of
the populations has interior fixed polymorphic
points under a constant selection regime, then
the last comment means a possibility of
interception of the foregoing curves upon
corresponding scale transformation. However,
this would not be possible if at least one of the
populations has no interior fixed points in
constant environment. It would be especially
convenient to represent the foregoing trait-for-
trait relationships between the species by a
special ‘‘trait diagram’’ [see Fig. 1, sections (a)
for the three types I–III of genetic control of the
selected traits]. In the considered example for
additive loci (type I in Fig. 1) the curves
z2 =f(z1) and z1 = f(z2) correspond to unstable
interior fixed points in each of the isolated
systems. Interception results in mean trait values
(point v) corresponding to a stable polymorphic
point X=(X1,X2) [see Fig. 1(b)]. The distinctive
feature of the second example (type II,
semi-dominant loci) is that the functions f(z) and
f(z) are multiple-valued. It is also noteworthy,
that in the third example (type III, haploid
selection) we used transformation z : az+ b to
achieve interception (hence interior fixed point).
Under haploid selection in a stable environment
all interior fixed points in an isolated population
can be calculated as suggested in Kirzhner et al.
(1995a, b; Proposition 1) and all these points are
unstable (Rutschman, 1994).

In further analysis we employed an important
class of fitness functions w=w(=u–z =), log-
arithmically-concave or log-convex [i.e. the
function log(w) is concave or convex, corre-
spondingly]. This class is of common use in
theoretical population genetics, and the func-
tions in our foregoing example [eqns (1)] also
belong to this class. In particular, the logarithmi-
cally-concave function [gQ 0 in eqns (1)]
describes in our model a ‘‘pursuing strategy’’
type, when the fitness of a genotype is maximal

if its trait value is equal to the mean value of the
corresponding trait in the partner species
population. This strategy is formally character-
istic to parasitic and mutualistic species.
Likewise, the logarithmically-convex function
[gq 0 in eqns (1)] describes a ‘‘running-away
strategy’’ type, when the fitness of a genotype is
minimal if its trait value is equal to the mean
value of the corresponding trait in the partner
population. This strategy is formally character-
istic to hosts and species competing for a
common resource. Gavrilets & Hastings (1994)
proved, for logarithmically-concave fitness func-
tions, that in a constant environment no interior
fixed points are possible (either stable or
unstable) if the selected trait is defined by purely
additive genes of equal effects (see also Kirzhner
et al., 1995a, b; Korol et al., 1996). Analogous
consideration for logarithmically-convex func-
tions leads to the conclusion that an interior
fixed point may exist only with equal allele
frequencies at the selected loci (Gavrilets &
Hastings, 1994; Kirzhner et al., 1995a, b; Korol
et al., 1996). This means that the foregoing
conditions (i) and (ii) are violated. Therefore, if
the selected trait of the pursuing strategist is
controlled by purely additive genes of equal
effects, no interior fixed point is possible in a
community consisting of such a species and any
other partner. We should stress here, that this
statement holds, given the foregoing conditions,
for any possible dependence of the fitness
function on population density (e.g. in the
ecological–genetic version of T&T model pro-
posed by Doebeli, 1996a). Nevertheless, this does
not exclude the possibility of polymorphism in
the partner. With the same condition of equal
additive gene effects, a species that is a
running-away strategist may have a polymorphic
point, albeit with a constraint of equal allele
frequencies at the two loci.

It is known that stabilizing selection in a
constant environment for a trait controlled by
two loci with unequal effects or semi-dominant
effects may result in (multiple) interior fixed
points (Kojima, 1959; Lewontin, 1964; Nagylaki,
1989; Gavrilets & Hastings, 1993). Together with
the foregoing analysis, this implies that the same
conditions will result in an interior fixed point
for any type of interacting populations. This
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Box 1: TRAIT-FOR-TRAIT INTERACTION
             CAN PROMOTE POLYMORPHISM

     in a species experiencing selection pressures from
     other species of the community, if at least one of
     the following conditions holds:

a. There are non-equal effects of the additive genes
     controlling the selected trait
b. There is a dominance deviation from the purely
     intra-locus additivity scheme, preserving additivity
     across loci
c. Disturbance of the log-concavity/log-convexity
     of the fitness function of the considered species
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does not mean that this point will be even locally
stable. Nevertheless, even if the corresponding
fixed points are unstable in each of the
populations subjected to a constant selection
regime, the interaction between the populations
can convert this pair of points into a stable
polymorphic point in the entire system [see Fig.
1(b), types I–III].

The foregoing examples are merely illus-
trations of how the interaction between species
can convert unstable fixed points characteristic
of the separate population into stable polymor-
phisms. Certainly, if an interior fixed point was
found for the overall system, its stability should
be tested using, for example, the Jacobian matrix
technique. This can be done either analytically or
numerically, although analytical consideration
may encounter serious technical difficulties. We
are not aware about general results relating the
spectrum of the Jacobian of a combined dynamic
system with the spectra of the isolated com-
ponent systems. Moreover, simple upper esti-
mations of matrix spectra (Gantmacher, 1959)
show that the spectral radius of an overall system
is expected to be larger than that of each
component rather than smaller. However, our
examples, and corresponding analytical esti-
mates for single-locus systems (Kirzhner, unpub-
lished results) show that an opposite situation
may be no less frequent.

3.2. ‘‘’’ 

A clear possible scenario of appearance of
more complex forms of limiting polymorphic
dynamics is destabilization of stable polymor-
phic fixed points. This may be achieved by
changing the recombination rates, the ratio of
the additive effects or heterozygous deviation of
the trait loci, or the intensity of selection, in
either of the interacting populations. Figure
1(c–e) demonstrates these possibilities.

It is noteworthy, that for each of the
interacting species, the sequence of the mean
values of the trait of its partner can be considered
formally as a changing environment with some
order of environmental states. Therefore, the
existence of dynamic polymorphism in a system
of interacting populations means that for each of
the partners considered as isolated populations a
corresponding regime of (abiotic) environmental

changes can be found resulting in the same
dynamic pattern. For a single species with equal
effects of the selected loci on the trait and any
order of environmental states (with either finite
or infinite set of states), it was shown that: (a) if
the fitness function is log-concave, then two-lo-
cus polymorphism cannot be maintained in any
form; (b) if the fitness function is log-convex,
then two-locus polymorphism can be maintained
only with equal allele frequencies at the two loci
(Kirzhner et al., 1995a, b; Korol et al., 1996).
Therefore, for equal additive effects of the trait
loci, two-locus polymorphism is impossible in
the ‘‘pursuing strategist’’ in any form, while the
‘‘running away strategist’’ can maintain dynamic
polymorphism only with equal allele frequencies
at the two loci.

Clearly, according to the definition of the
curves z2 =f(z1) and z1 = f(z2) on the two-
species trait diagram, any number of loci
affecting the selected traits can be considered.
Generalization of the trait diagrams for commu-
nities with more than two species means an
analysis of interception of surfaces of higher
dimensionality that is less evident geometrically.

The foregoing analysis can be generalized in a
form of simple heuristic rules which help to
reveal polymorphic systems as dependent on the
peculiarities of the genetic control of selected
traits (see Box 1). Actually, these statements can
be considered as the necessary condition for
two-locus polymorphism maintenance: at least
one of the rules (a)–(c) should hold to provide
two-locus polymorphism. Otherwise, polymor-
phism either is impossible (for the ‘‘pursuing
strategist’’) or exists in a very special form (for
the ‘‘running away’’ strategist).
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Comment on rule b
Overdominance is known to be a routine

factor helping in maintaining polymorphism.
However, this fact is irrelevant to a situation
where the dominance deviations from the
‘‘purely additive within-locus’’ scheme concern
the effect on the selected trait and not on fitness.
Nevertheless, many polymorphisms may result
even when dominance deviations for the selected
trait are small (see later).

Comment on rule c
No examples are provided in the paper

demonstrating that genetic systems with equal
additive effects of the trait loci obeying this rule
can indeed manifest polymorphism. Neverthe-
less, such examples can easily be constructed (for
more details see Korol et al., 1996).

Clearly, the foregoing rules do not provide
sufficient conditions, in a strict sense, for
two-locus polymorphism. These rules stress only
the importance of the deviations, but do not
define the precise intervals of the corresponding
parameters that ensure polymorphism mainten-
ance. However, they enable to reveal domains in
parameter space with abundant polymorphic
regimes, both polymorphic stable points and
complex limiting behaviour. Figures 2 and 3
illustrate how in a host–parasite system [see eqns
(1), for the corresponding fitness functions] the
manifestation of polymorphism depends on
selection intensity and deviations from equal
gene effects or from a purely additive scheme at
the intralocus level. For both rules our intention
was to cover as broad as possible range of the
most important parameters of the system, i.e.
characterizing the foregoing deviations and
selection intensities in both participating species.
For that, the presented computer experiments
included the results of 400 000 trajectories for the
first group (Fig. 2) and 100 000 for the second
one (Fig.3), for different combinations of
parameters. The only limitation was in the range
of recombination parameters—only two sets
were taken for each example that appeared to
represent the entire range of recombination
values (in fact, our experiments included also
detailed scans along the recombination axes).
Another limitation was that we presented only
‘‘pure’’ systems with respect to deviations from

additivity and equal gene effects. Namely, no
‘‘crosses’’ were made between the deviation types
within a species or between species. With the
exception of the foregoing limitations, the results
can be considered as an attempt for a rather
detailed exploration of the system behavior in
the parametric space.

In accordance with the foregoing consider-
ation and predictions presented in Box 1, one can
see that both deviation from equal gene effects
(Fig. 2) and dominance deviation at the loci
controlling the selected traits (Fig. 3) result in
polymorphism maintenance. It is noteworthy,
that the presented sets of parameters encompass
three regions: loss of polymorphism, polymor-
phic fixed points, and dynamic polymorphism
(cycles and more complex limiting behavior).

The shape of regions in Figs 2 and 3 indicates
the complexity of the corresponding dynamic
system for the relatively simple case considered
here: interaction between two species coevolving
on a T&T basis when the target trait in each
species is controlled by two loci. The proposed
formulation of species genetic interactions allows
us to model much more complex species
communities in the same way. As an example, we
present here a three-species model, including two
competing hosts and one parasite. For the sake
of simplicity in the example, the relationships of
the competitors with each other and with the
common parasite depend on the same two-locus
traits. The parasite is a four-locus system, with
two traits controlled by two different blocks of
linked loci (Fig. 4). This system appears to obey
the proposed rules of Box 1, and a broad
spectrum of non-trivial dynamics can be found
for different combinations of parameters.

4. Conclusions

This paper sheds new light on the problem of
polymorphism maintenance in species coevolu-
tion mediated by selection for quantitative traits.
The basic difference of this class of models is that
it takes advantage of direct Mendelian formu-
lation of the genetic variation of the foregoing
traits (Hamilton et al., 1990; Preygel & Korol,
1990; Korol et al., 1994; Doebeli, 1996a, b,
1997). This is crucial when the objective is
to reveal the conditions for polymorphism
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maintenance, and especially, recombination and
sex evolution (Korol et al., 1994; Doebeli,
1996a). Trait-based Mendelian models have also
been used to analyse intraspecific competition
(Loeschcke & Christiansen, 1984; Korol et al.,
1994; Doebeli, 1996a, b).

The conditions of polymorphism maintenance
in this class of models remains a difficult
question (Hamilton, 1993). We showed here that
the conditions for polymorphism maintenance in
interacting species could be deduced from the
behavior of the isolated partners in stable and
changing environments. These results establish a
common basis for comparison of the two forms
of temporarily varying selection, i.e. abiotic and
biotic, as evolutionary factors. Consequently,
this allows addressing such difficult questions as
polymorphism maintenance or evolution of sex
and recombination, that can not be considered
properly in non-Mendelian models. The ob-
tained results demonstrate a remarkable prop-
erty of trait-dependent coevolution concerning
the conditions for maintenance of genetic
polymorphism: what seems to be more realistic,
that is non-equal gene effects and deviation from
purely additive within-locus gene action, pro-
motes polymorphism.

We envisage that the proposed analysis of
multi-species multilocus coevolution based on
T&T interactions, together with the heuristic
rules for polymorphism maintenance, may find
wide applications in the genetics–ecology inter-
face. It can be applied to many real systems
where the ecological details of species inter-
actions are known or may be recorded on the
level of quantitative traits. We should note,
however, the restrictions of the model. The
major one is caused by the conditions when the
central model assumption is valid, namely: that
species interaction can be represented by an
approximation where fitness depends only on the
mean trait values. Clearly, this condition means
that each individual of one species encounters
during its life many individuals of the other
species, and vice versa. We believe that such
situations may be characteristic for systems like
‘‘pollinator–host plant’’, ‘‘herbivore–plants’’,
‘‘macroparasite (like insects)–hosts’’. Neverthe-
less, in spite of the foregoing limitations, such an
approach is a more feasible task in contrast to
detailed genetic analysis of the involved individ-
ual loci. Still, its advantage is that it allows to
analyse species coevolution and polymorphism
maintenance in direct Mendelian terms.

F. 2. Polymorphism maintenance under host–parasite interaction as dependent on the ratio of gene effects (d), selection
intensities (s) and recombination rates. The parameters of the host and parasite populations are denoted by indices h and
p, correspondingly: (a) rh = rp =0.1, (b) rh =0.4, rp =0.01. The results of computer simulations are presented and are based
on iterations of the coevolutionary operator (2) with fitness functions (1). The selected traits of each of the partners were
assumed to depend on two linked loci with effects dAp + dBp =6 and dAh + dBh =6, so that if dAp varies from 1 to 3, then
the ratio of gene effects varies from 5 to 1 (clearly, equal gene effects correspond to the middle values of d, d=3). For
an enlarged scale see the inserted figure in the right upper corner of part (a) where the axes dAp and dAh are shown for the
little blocks that comprise both parts, (a) and (b), of the figure. Each such block corresponds to the indicated combination
of the parameters s (parasite) and s (host). The yellow color corresponds to loss of polymorphism in either of the interacting
populations for at least one of the loci, whereas the blue indicates polymorphic fixation for both loci in each of the
populations. The green area denotes complex behavior with polymorphism maintained in both partners for both loci; a
complex attractor in the inserted figure in the right upper part is an example of such a behavior in the parasite part of
the system. PA and PB in the insert are the frequencies of corresponding alleles at the loci controlling the selected trait.

F. 3. Polymorphism maintenance under host–parasite interaction as dependent on dominance deviations (h), selection
intensities (s) and recombination rates: (a) rh =0.25, rp =0.01, (b) rh = rp =0.01. The selected traits of each of the partners
were assumed to depend on two linked loci with effects dAp = dBp and dAh = dBh, and within each of the systems one locus
manifests some dominant effect (hAp $ 0 and hAh $ 0) whereas the second locus is purely additive (hBp =0 and hBh =0). Values
of hAp from −0.5 to +0.5 correspond to a range from full dominance of the allele reducing the trait to full dominance
of the opposite allele; (c) in an enlarged scale the axes hAp and hAh are shown for the little blocks that comprise both parts,
(a) and (b), of the figure. The colors here correspond to those of Fig. 2. In Fig. 3(d) we show an example of a limit cycle
in the host population.



Figs 2 & 3. (Caption opposite)
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