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Abstract—It is proven that the equilibria set under multilocus Mendel dominance in a population
with any fixed-recombination coefficients is finite generically if the selection is nonepistatic in Karlin’s
sense. © 2003 Elsevier Science Ltd. All rights reserved.
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In the recent work [1], a general theorem on a finiteness of the equilibria set under phenotypical
selection in a multilocus multiallele population with any fixed-recombination coefficients was
established. As a consequence, the following result has been proved.

THEOREM 1. (See [1, Corollary 8.2].) The equilibria set under multilocus Mendel dominance is
finite generically. :

In this context, the genericity means that the finiteness takes place except for a proper algebraic
subset E of the fitness space. The elements of this space are positive vectors of form A = (A(g, h))
where g and h run over the set I' of the gamete genotypes, so that the pairs (g, h) determine
the zygote genotypes. The value A(g, h) is called the fitness coefficient for the corresponding
zygote. This value is symmetric, A(h, g) = A(g, k), moreover, it is invariant with respect to the
permutations of homological chromosomes, see [1, Section 6].

Every gamete g can be formally written as the formal product g; ... g where g; is the allele
carrying by ¢ at the i*h locus, 1 < i < I. We identify the set of loci under consideration with
L = {1,...,l}. We will say that the multilocus fitness vector is decomposable if there is a
function P such that

Mg,h) = P (A (g1,h),. A (91, 10))

with some single-locus fitness vectors A(Y), ..., A®). This concept includes two important partic-
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ular cases: the additive selection,

i

Mg, h) =D AD(g;, ha),

t=1

and the multiplicative selection
I
h) = H A® (94, hi)
i=1

both can be considered as the simplest manifestations of the nonepistasis (see [2] for a relevant
discussion). Karlin [3] suggested a sort of “interpolation” between additive and multiplicative
selection he named the generalized nonepistatic selection. This model (in a slightly modified
notation) is

Mg, h) = Z c(U) H A0 (93 hi)s O

UcL i€l

where ¢(U) are some nonnegative coefficients, at least one of them is positive. The addi-
tive/multiplicative cases are included in (1) with ¢(U) = dy,p or c(U) = éjyy,1, respectively.
(Here, 6 is Kronecker’s symbol.)

Now let us clarify what is the Mendel multilocus dominance mentioned in Theorem 1. In a
formal sense, this is the direct product of the Mendel single-locus structures, see {1, Section 4].
At the diallele locus with the alleles A and a such that A dominates a, the fitness coefficients
are AM(Aa) = A{AA) and A(aa). In this situation, we consider A\(AA) and A{aa) as independent
variables, the coordinates of the two-dimensional fitness vector. A well-known elementary result
in this case is that if A\(AA) # A(aa), then the number of equilibria is either two or infinity.

Now we consider two-locus diallele population and suppose that there is the Mendel dominance
at each locus. Let the fitness coefficients at the first locus be A(A4) = A(Aa) = a, Maa) = ¢,
and similarly, let A(BB) = A(Bb) = §, A(bb) = w at the second one. The typical zygotes are
aabb, aaBB, AAbb, and AABB. Denote their fitness coefficients by A1, A2, As, Aq. All other
zygotes have the same fitness coefficients, for example, A(AaBb) = A(AABB), etc.

The selection rule (1) yields

A1 = ¢ + 1€ + Ccow + Cy2EwW, (2)
Az = ¢g + 1€ + 28 + €12€0, (3)
Az = ¢g + c10 + caw + crp0w, (4)
Ay =co + 1+ ¢ + ci200, (5)

where ¢y = c(@), e1 = ¢({1}), c2 = ¢({2}), 12 = ¢(L), L = {1,2}.

By substitution from (2)—(5) into the equations of the exceptional set E (related to Theorem 1),
we obtain a system of algebraic equations for ¢, €, 8, w. These equations determine the ezceptional
set E in the space of parameters a, ¢, 8, w. The equations of E are of form

Z Pi(lj,)z'g,ia,u (co,€1,c€2,c12) @12 BB W™ = 0, (6)
11,12,%3,%4 ‘
where Pff ),2 ia.i, 2T€ some polynomials, 1 < j < N, N is the total number of them. We show that
at least one of polynomials P,(IJ )12 ia.is 18 MOt identically zero.

Formulas (2)—(5) yield a linear transformation (cg, 1, ¢z, €12) = (A1, A2, A3, Ag). Its determi-
nant is

l ¢ w ew
1 € B €8} _ 20 a2
1 o0 w aw =—(a=e) (B -w)"
1 a B8 af
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This is different from zero if o # € and @ # w. Without loss of generality, one can assume
that this condition is fulfilled. Take (A1, A2, As, A4) ¢ E and solve the linear system (2)-(5)
with respect to ¢g, ¢1, ¢z, c12. (The solution cannot be positive, no matter.) By definition of
equations (6), at least one of them turns out to be broken. Thus, there exists a nonvanishing
polynomial among P,(IJ)H isiiat

Now the system of all equations

() —
i1,12,13,14 (co,c1,c2,c12) = 0,

coming from (6) defines a proper algebraic subset C C R*.

THEOREM 2. If (¢g,c1,c2,¢12) € C, then the set of equilibria under selection rule (2)—(5) is finite
generically with respect to «, €, 3, w.

PROOF. Take any above-mentioned four-tuple (cp, ¢y, cq, ¢12). Then the exceptional set EcCR*
defined by (6) is a proper algebraic subset. For any four-tuple (@, ¢, §,w) ¢ E, the corresponding
four-tuple (A1, A2, A3, A4) ¢ E. The latter means, by definition of E, that the equilibria set is
finite. ]

The same method works for the generalized nonepistatic selection (1) under the Mendel dom-
inance at each of [ diallele loci takes place. The only assertion we need to prove is the following.

LEMMA. Let for any i =1,...,l some distinct numbers )\g) and ,\5") be given. Then the system
of 2! linear equations

My = 3 UV [[AYD (me{01},1<i<y) (7)

UcL el
is solvable with respect to the unknowns {c(U) : U C L}, whichever are 2" numbers A, . ,,.
PROOF. Since we have as many equations as there are unknowns in (7), it is sufficient to show
that the system with all A, . ,, = 0 has the only trivial solution. This is obvious for { = 1 and
we actually know this for [ = 2. Let us pass from (I — 1) to ! by induction.
Assume that

Sy [[M =0 (mefo1}1<i<). (8)

ucL €U
It is sufficient to prove that all ¢(U) = 0 for U # 0. For definiteness, we will prove that ¢(U) = 0
if 1 € U. Consider two subsystems of (8) which correspond to v; = 0 and v, = 1, respectively:

ST’ I 2+ Y «n[[2 =0 (9)

levucL i€U\{1} 1¢UcL i€V
and
[T conPIietn\ii@ + Y ) ]2 =o0. (10)
leUclL 1¢UCL i€l

Subtracting (10) from (9) and cancelling )\(()1) - )\gl) # 0, we get

d>oow) JI M) =0

1€UCL €U\ {1}

Thus, the system is of form (7) with L\{1} instead of L. By the induction, assumption ¢(U) = 0
forl1eU. ]

As a result, we obtain the following theorem.
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THEOREM 3. In the l-locus diallele population with the Mendel dominance at each locus, there
exists a proper algebraic subset CR?' such that if (e(U) : U c L) ¢ C, then under generalized
nonepistatic selection rule (1), the set of equilibria is finite generically with respect to the single-
locus fitness coefficients.

In addition, the number of equilibria does not exceed 3ITI-1, see [1, Corollary 8.1].

Note that Theorem 3 says nothing for a priori given selective weights c(U) in (1), in particular,
for the additive or the multiplicative selection. However, in the additive case, the finiteness result
follows from [4, Theorem 9.6.13 and Corollary 9.13]. The generic finiteness of the equilibria set
under the multiplicative selection has been recently proved in [5].
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