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sense. (~ 2003 Elsevier Science Ltd. All rights reserved. 
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In the  recent work [1], a general  theorem on a finiteness of the  equil ibria  set under phenotypical  

selection in a mult i locus multial lele popula t ion  with any f ixed-recombinat ion coefficients was 

established.  As a consequence, the  following result  has been proved. 

THEOREM 1. (See [1, Corollary 8.2].) The equilibria set under multilocus Mendel dominance is 
finite generically. 

In this  context ,  the  genericity means that the finiteness takes place except for a proper algebrazc 
subset E of the fitness space. The  elements of this space are posit ive vectors of form A = (A(g, h)) 

where g and h run over the  set F of the  gamete  genotypes,  so tha t  the  pairs (g, h) determine 

the zygote genotypes.  The  value A(g, h) is called the  fitness coe~icient for the  corresponding 
zygote. This  value is symmetr ic ,  A(h,g) = A(g, h), moreover, i t  is invariant  wi th  respect  to the 

pe rmuta t ions  of homological  chromosomes, see [1, Section 6]. 

Every gamete  g can be formally wr i t ten  as the  formal product  g l . . .  gl where g~ is the allele 
carrying by g at  the  i th locus,  1 < i < l. We identify the set of loci under considerat ion with 

L = { 1 , . . . , l } .  We will say tha t  the  mult i locus fitness vector is decomposable if there  is a 

function P such t ha t  

~(g, h) = e (;1)(91, h,),... ,~(~)(gz, h~)), 

with some single-locus fitness vectors A 0),  . ,  A (0. This  concept includes two impor t an t  part ic-  
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ular cases: the  additive selection, 

and the multiplicative selection 

l 

h) = hi), 
i=1 

1 

h) = 1-I h,), 
i=1 

both  can be considered as the simplest manifestat ions of the nonepistasis (see [2] for a relevant 
discussion). Karl in [3] suggested a sort  of "interpolation" between additive and multiplicative 
selection he named the generalized nonepistatic selection. This model (in a slightly modified 
notation) is 

h ) =  c(U)1-[  hi), (1) 
UcL iEU 

where c(U) are some nonnegative coefficients, at  least one of t hem is positive. The  addi- 
t ive/mult ipl icat ive cases are included in (1) with c(U) = 5U, L or c(U) = 51v1,1, respectively. 
(Here, 5 is Kronecker 's  symbol.)  

Now let us clarify what  is the Mendel multilocus dominance mentioned in Theorem 1. In a 
formal sense, this is the direct product  of the Mendel single-locus structures,  see [1, Section 4]. 
At the diallele locus with the alleles A and a such tha t  A dominates  a, the fitness coefficients 
are A(Aa) = A(AA) and A(aa). In this situation, we consider A(AA) and A(aa) as independent 
variables, the  coordinates of the two-dimensional fitness vector. A well-known elementary result 
in this case is tha t  if A(AA) # A(aa), then  the number of equilibria is either two or infinity. 

Now we consider two-locus diallele populat ion and suppose tha t  there is the  Mendel dominance 
at each locus. Let  the fitness coefficients at  the first locus be A(AA) = A(Aa) = a ,  A(aa) = ~, 
and similarly, let A(BB) = A(Bb) = f~, A(bb) = w at  the second one. The  typical zygotes are 
aabb, aaBB,  AAbb, and A A B B .  Denote their fitness coefficients by A1, A2, A3, ha. All other 
zygotes have the same fitness coefficients, for example,  A(AaBb) = A(AABB) ,  etc. 

The  selection rule (1) yields 

A I = CO + Cl~ --~ C202 --~ C12£0J , 

A 2 = CO "~ Cle  J¢- C2~ -~- C12e~, 

A 3 : C 0 -~- C1C~ -'I- C2/M + C120t02 , 

A 4 = C O -[- Cl(]( -+ C2/~ -1L C120c~, 

(2) 
(3) 
(4) 
(5) 

where co = c(@), cl = c({1}), c2 = c({2}), c12 ---~ c(L), L = {1, 2}. 
By subst i tut ion from (2)-(5) into the equations of the exceptional set E (related to Theorem 1), 

we obtain a system of algebraic equations for a ,  ~, $, w. These equations determine the exceptional 
set E in the space of parameters  a ,  e, ]3, w. The  equations o f /~  are of form 

E / > ! J ) . . .  (C0,C1 ' Q i2 ia i4 C2,C12) O/ e f~ o3 = 0, (6) $I~$21~3J14 

$1152153 ~ 4  

where R (j) i~,,2,ia,,4 are some polynomials, 1 _< j _< N,  N is the to ta l  number  of them. We show tha t  

at least one of polynomials R. (j). • . is not identically zero. 
Formulas (2)-(5) yield a linear t ransformat ion (co, Cl, C2, C12) ~-* (A1, A2, )~3,)~4). Its  determi- 

nant  is 
1 e w Ew [ 

I e" ,8 e,6'] = _ ( a _ e ) 2 ( f ~ _ w ) 2 .  
1 (~ w c~w 
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This is different from zero if a # E and /3 # w. Without  loss of generality, one can assume 
tha t  this condition is fulfilled. Take (A1, A2, A3, A4) ¢ E and solve the linear system (2)-(5) 
with respect to CO, Cl, c2, c12. (The solution cannot  be positive, no mat ter . )  By definition of 
equations (6), at  least one of them turns  out to be broken. Thus,  there exists a nonvanishing 

(J) 
polynomial  among P~1,i2#3,i4. 

Now the system of all equations 

(J) 
Pil,i~,i~,i4 (Co,CI,C2, c12) = O, 

coming from (6) defines a proper algebraic subset C C R 4. 

THEOREM 2. I f  (CO, C1, C2, C12) ~ C, then the set of  equilibria under selection rule (2)-(5) is finite 
generically with respect to a, ¢,/3, w. 

PROOF. Take any above-mentioned four-tuple (c0, cl, c2, c12). Then the exceptional s e t /~  C R 4 
defined by (6) is a proper algebraic subset. For any four-tuple (a,  ~,/3, w) ~ E:, the corresponding 
four-tuple (A1,A2,A3, An) ¢ E. The  lat ter  means, by definition of E,  tha t  the equilibria set is 
finite. | 

The  same method  works for the generalized nonepistatic selection (1) under the Mendel dom- 
inance at  each of I diallele loci takes place. The  only assertion we need to prove is the following. 

LEMMA. Let  £or any i = 1 , . . . ,  l some distinct numbers A~ i) and A~ i) be given. Then the system 
o[ 2 z linear equations 

/~Yl,...,Yl : ~ c(U) H A(i)~, (vi E {0, 1}, 1 < i < l) (7) 
UcL iEU 

is solvable with respect to the unknowns {c(U) : U C L}, whichever are 2 l numbers A~ 1 ...... ,. 

PROOF. Since we have as many  equations as there are unknowns in (7), it is sufficient to show 
tha t  the sys tem with all A~ 1 ...... ~ = 0 has the only trivial solution. This is obvious for l = 1 and 
we actually know this for l = 2. Let us pass from (l - 1) to l by induction. 

Assume tha t  
Z c ( U )  H X(i)u, = 0  (u iE  {0,1}, 1 < i < l ) .  (8) 
UcL iEU 

It  is sufficient to prove tha t  all c(U) = 0 for U # 0. For definiteness, we will prove tha t  c(U) = 0 
if 1 E U. Consider two subsystems of (8) which correspond to vl = 0 and vl = 1, respectively: 

and 

c(U)~(1) n )k(~) + Z c(U) H )k(i) : 0 (9) 
1EUcL iEU\{1} lgUcL iEU 

H c(U)AiDHi E U\{1}A(i~ ) + ~ c(V) H A(i) = 0. (10) 
1EUcL lqEUcL iEU 

Subtract ing (10) from (9) and cancelling A(01) - A~ I) # 0, we get 

c(U) H : 0  
1EUcL iEU\{1} 

Thus, the sys tem is of form (7) with L\{1} instead of L. By the induction, assumpt ion c(U) = 0 
for 1E  U. | 

As a result, we obtain  the following theorem. 
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THEOREM 3. In the l-locus diallele population with the Mendel dominance at each bcus,  there 
exists a proper algebraic subset C R  2' such t h a t / f  (c(U) : U C L) ¢ C, then under generalized 
nonepistatic selection rule (1), the set of equilibria is fin/re generically with respect to the single- 
locus fitness coefficients. 

In addition, the number of equilibria does not exceed 3 ]rl-1, see [1, Corollary 8.1]. 
Note tha t  Theorem 3 says nothing for a priori given selective weights c(U) in (1), in particular, 

for the additive or the multiplicative selection. However, in the additive case, the finiteness result 
follows from [4, Theorem 9.6.13 and Corollary 9.13]. The generic finiteness of the equilibria set 
under the multiplicative selection has been recently proved in [5]. 
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