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Summary

Temporally varying selection is considered to be one of the potential mechanisms of recombination

evolution. We found earlier that simple cyclical selection for a trait controlled by multiple additive,

dominant or semi-dominant loci can result in extremely complex limiting behaviour (CLB) of

population trajectories, including ‘supercycles ’ and more complex attractors. Recombination rate

proved to be a key factor affecting the mode of CLB and the very existence of CLB. Therefore, we

considered here a generalized model : the fixed recombination rate was replaced by a polymorphic

recombination modifier. The modifier-dependent changes included: (a) supercyclical dynamics due

to the recombination modifier in a system that does not manifest CLB when recombination rate is

a fixed parameter ; (b) appearance of a new level of superoscillations (super-supercycles) in a

system that manifests supercycles with a fixed modifier ; (c) chaotization of the regular supercyclical

dynamics. The domain of attraction of these movements appeared to be quite large. It is

noteworthy that the modifier locus is an active participant in the observed non-monotonic limiting

movements. Interactions between short-period forced oscillations and the revealed long-period

auto-oscillations appeared to result in new regimes of recombination evolution (for some range of

linkage between the modifier locus and the selected system), as compared with those caused by the

forced oscillations alone.

1. Introduction

The evolution of recombination remains an important

unsolved problem in evolutionary genetics. The results

of experiments on artificial selection for altered

recombination rates (r) suggest that almost every

population has enough stored genetic variability to

ensure response to selection for changed r (reviewed in

Brooks, 1988; Korol et al., 1994). Theoretical analysis

shows that under stable environmental conditions a

panmictic population polymorphic for fitness-related

loci should evolve towards the minimum possible level

of recombination. Namely, introduction of a new

modifier allele affecting r into an equilibrium poly-

morphic population is accompanied by an increase in

its frequency if it reduces r (Zhivotovski et al., 1994;

Barton, 1995). Hence, factors should exist opposing

this trend. Moreover, there is some evidence for a

possible negative correlation between an individual’s
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fitness and the level of meiotic recombination in the

same individual (Zhuchenko & Korol, 1985;

Zhuchenko et al., 1986; Cvetkovic & Tucic, 1986).

This implies that the problem of identifying factors

ensuring the maintenance of non-zero (and}or poly-

morphic) recombination within natural populations is

even more complicated than anticipated.

A series of models have been proposed to explain

the evolutionary mechanisms responsible for the

persistence of recombination (and sex in general) in

nature. These include selection in variable abiotic

conditions, selection against harmful mutations and

frequency-dependent selection caused by interaction

between antagonistic species (for reviews and classi-

fications of the models see: Maynard Smith, 1988a ;

Kondrashov, 1993; Korol et al., 1994; Otto &

Michalakis, 1998). The basis of these models is the

assumption that the gene pool is subjected to variable

conditions (either external, due to changes in the

selection regime, or internal, due to the mutation

process). Previous theoretical studies have shown that
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temporal environmental variation can indeed promote

increased recombination, although the revealed

patterns appear to be very complex (Charlesworth,

1976, 1993; Maynard Smith, 1980, 1988b ; Sasaki &

Iwasa, 1987; Bergman & Feldman, 1990; Barton,

1995; Korol & Preygel, 1989; Korol et al., 1994;

Kondrashov & Yampolsky, 1996; Feldman et al.,

1997). A few experimental studies and observations

have shown that selection for adaptively important

traits may indeed result in changes in the recom-

bination system, e.g. in an increased rate of re-

combination (Flexon & Rodell, 1982; Burt & Bell,

1987; Wolf et al., 1987; Gorodetsky et al., 1990;

Gorlov et al., 1992; Korol & Iliady, 1994; Derzhavets

et al., 1996; Saleem et al., 1998).

A Mendelian population subjected to a strictly

cyclical selection regime is expected to manifest one of

the following two modes of dynamics at the selected

loci : (1) stable forced oscillations for all loci, with a

period equal to that of the environment (Korol et al.,

1996) ; or (2) fixation for some or all of the loci.

Taking any point within the period as a ‘phase point ’,

we can refer to the first situation as ‘stable poly-

morphism’ and to the second as ‘fixation’. In other

words, by considering the time scale in terms of

environmental periods, the first case could be trivially

classified as a polymorphic stable point (Kirzhner et al.,

1995a). We have shown earlier that simple cyclical

selection for a trait controlled by multiple additive,

dominant or semi-dominant loci can result in ex-

tremely complex limiting behaviour (CLB) of diploid

and haploid population trajectories (Kirzhner et al.,

1996, 1998a, b). Such behaviour was observed for a

broad range of system parameters.

The foregoing studies have shown that recom-

bination rate strongly affects the mode of CLB and

the existence of CLB. Therefore, it should be both

interesting and instructive to analyse how this

phenomenon will be expressed when, instead of a

fixed parameter r, the rate of recombination is a

genetically controlled trait, dependent on a poly-

morphic modifier (‘rec-modifier ’). A stronger mo-

tivation to analyse such models comes from the general

interest in the evolution of sex and recombination.

Indeed, the foregoing results on CLB were obtained

with standard models of stabilizing selection with a

cyclically moving optimum – exactly the same models

that have been employed in models of recombination

evolution in changing environments (Maynard Smith,

1980, 1988a ; Korol & Preygel, 1989; Charlesworth,

1993; Korol et al., 1994; Barton, 1995).

We have previously analysed the effect of a rec-

modifier on the behaviour of a two-locus population

with a special fitness matrix that manifested super-

cyclical oscillations with a very long period (Kirzhner

et al., 1995b). Introduction of a polymorphic modifier

resulted in the emergence of a higher level of

oscillations (referred to as ‘super-supercycles ’). That

is, the modifier itself manifested some cyclical be-

haviour, such that the full period of the modifier

trajectory consists of many dozens or even hundreds

of supercycles. With respect to the forces affecting

modifier dynamics in CLB systems, one should take

into account the following factors : short-period

environmental oscillations causing a corresponding

movement of haplotype and allele frequencies, super-

cyclical auto-oscillations with a long period (as a

rule), and the linkage of the modifier to the selected

system.

This approach is applied here to our standard CLB

models based on cyclical selection for a trait controlled

by multiple additive, dominant or semi-dominant loci

(see Kirzhner et al., 1996, 1998b). We analyse the

dynamics of multilocus systems with polymorphic rec-

modifiers subjected to cyclical selection. The par-

ameter sets are chosen in such a way that the selected

system manifests relatively simple modes of CLB

(supercycles) or a stable polymorphism (in the sense

explained above). Different types of rec-modifiers will

be considered: (1) modifiers of recombination in all

intervals of a chromosome; (2) modifiers with a non-

even distribution of the effects, including: (i)

modification of linkage between blocks of tightly

linked loci, with no effect on the within-block

recombination; and (ii) modification of linkage within

blocks, with no effect on recombination between the

blocks.

2. The model

We examine the behaviour of an infinite population

with panmixia, non-overlapping generations and

several diallelic loci, A
i
}a

i
(i¯1,… ,L), affecting the

selected trait, u, plus a modifier M}m which is neutral

with respect to u but affects the rate of recombination

between A
i
}a

i
. Consider a genotype g with u¯ u(g)

defined as: u(g)¯Σ
i
u
i
(g), where the effect of the ith

locus of genotype g is specified as:

d
i
, for A

i
A

i
(d

i
" 0),

u
i
(g)¯ d

i
(1­h

i
)}2, for A

i
a
i
(®1% h

i
%1),

0, for a
i
a
i
.

Clearly, this scheme describes additive control of the

selected trait u across loci, with an arbitrary level of

dominance within loci ; the heterozygous deviation is

h
i
. For cyclical selection, the fitness w

t
(u) of a genotype

with trait value u and environmental state t is defined

by the fitness function

w
t
(u(g))¯F(u(g)®z

t
),

where z
t
is the optimum at state t. For example, one

can use F(u(g)®z
t
)¯ exp²®[u(g)®z

t
]#}s#´, a fitness

function that is widespread in population genetics.
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The evolutionary equations for the environmental

state t can be written in the standard form:

x!
m

¯Σw
t
(u(g

ij
))P

ij,m
x
i
x
j
}W, (1)

where x and x« are gamete frequencies in adjacent

generations; W is the mean fitness ; and P
ij,m

& 0 is the

probability of producing gamete m by a genotype g
ij

resulting from the union of gametes i and j, ΣP
ij,m

¯
1. The frequency P

ij,m
of haplotype m can easily be

calculated as a sum of the frequencies of elementary

events resulting in its appearance from the zygote g
ij
.

Clearly, P
ij,m

depends on the recombination

parameters, determined by the modifier locus. Com-

puter modelling was based on iterations of (1) for

L­1 loci (L selected and the modifier).

3. Results

(i) Modification of recombination rates in all

inter�als

For the sake of simplicity, let us assume equidistant

distribution of the selected loci in the chromosome,

and equal effects of the modifier locus on recom-

bination in each interval. We consider here a special

mode of CLB of the selected system – supercycles – as

a basis for analysing the complications caused by the

introduction of a polymorphic modifier into the

system. The usual way to study the fate of the modifier

locus, especially when using analytical tools, is to

introduce at a low frequency a new modifier allele

after reaching a (polymorphic) steady state for the

selected system (Feldman et al., 1997). We are

1
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Fig. 1. Modifiers as a cause of supercyclical behaviour. The selected system consists of three additive loci (i.e. h
i
¯ 0)

with unequal effects. P
i
is the frequency of the allele with a positive effect on the trait at locus i. (a) Damped oscillations.
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c
¯ 0±1. The optimum trait values in four

environmental states (each continued for one generation, n
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$
¯ n

%
¯1) were m

"
¯ 6±78, m

#
¯ 3±76, m

$
¯ 0±1 and

m
%
¯m

#
. (b) ‘Bistable ’ damped oscillations (starting from different initial points). d

"
¯1, d

#
¯ 2, d

$
¯ 4; s¯1±75; r
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¯

0, r
Mm

¯ 0±05, r
MM

¯ 0±5; r
c
¯ 0±1. The optimum trait values in four environmental states (n

"
¯ n

#
¯ n

$
¯ n

%
¯1) were m

"¯ 6±8, m
#
¯ 3±5, m

$
¯ 0±1 and m

%
¯m

#
. (c) Stable supercycle. The parameters of the model are : d

"
¯ 2, d

#
¯1±3, d

$
¯ 4;

s¯1±3; r
MM

¯ 0±5, r
Mm

¯ r
mm

¯ 0, r
c
¯ 0±1 ; n

"
¯ n

$
¯1, n

#
¯ 0; m

"
¯ 7±1, m

$
¯ 0±05. The initial part of the trajectory

was obtained with the modifier fixed with r¯ r
mm

¯ 0. The trajectory converged to a polymorphic stable point marked
by the arrow. Then an alternative allele M (r

MM
¯ 0±5) was injected into the system (with a low initial frequency). The

period of the resulting supercycle is about 360 environmental periods.

interested in following the full dynamics ; hence

starting the trajectories at arbitrary polymorphic

initial points allows us to evaluate the volume of the

CLB attraction domain. Three quite different types of

rec-modifier effects on CLB will be demonstrated: (a)

modifiers as the source of CLB; (b) modifiers as a

source of the ‘next level ’ of CLB (super-supercycles) ;

(c) modifiers as a factor in the chaotization of

population dynamics.

(a) Modifiers as the source of CLB

The major part of the results in this paper concerns

the mode of modifier evolution as dependent on the

system dynamics, referred to as CLB. Therefore, the

existence of CLB in the system with a fixed modifier is

the precondition of such a consideration. However, an

important question is whether or not the presence of

a polymorphic modifier may by itself be the factor

producing CLB. In other words, would it be possible

to obtain CLB by injection of a new modifier allele

into a system that is incapable by itself of manifesting

this mode of dynamics at any fixed value of

recombination? As an example, consider a model with

three slightly dominant loci with non-equal effects on

the selected trait, in which no CLB was found in

computer simulations at any 0! r! 0±5. With a

polymorphic modifier (r
mm

¯ 0, r
mM

¯ 0±05, and r
MM

¯ 0±5), the system manifests supercyclical damped

oscillations (Fig. 1a). A slight alteration of the

parameters results in similar system behaviour, the

only difference being the appearance of a second such
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Fig. 2. Super-supercycles, based on interaction of supercyclical dynamics of three semi-dominant selected loci and a
polymorphic modifier. The selected system consists of three equal semi-dominant loci (d

i
¯1), h

"
¯ 0±3, h

#
¯ 0±3, h

$
¯

0±4; r
MM

¯ 0±02, r
Mm

¯ r
mm

¯ 0, r
c
¯ 0±01 ; the selected optima were m

"
¯ 3±3 and m

#
¯ 0±3 (n

"
¯ n

#
¯1), s¯ 0±84. (a) The

phase diagram of the initial supercycle (the modifier is fixed for MM ) ; the period of this supercycle is about 60
environmental periods. (b) The phase diagram of the system with polymorphic modifier. (c) The super-supercyclical
dynamics of the modifier (represented across environmental periods). The brackets mark the points of a failure of
stability of the basic supercycle caused by the current dynamics at the modifier locus. (d ) Resistance of the super-
supercycle to moderate random disturbances of the environmental period (with a probability of π¯ 0±1 along the
trajectory, n

"
or n

#
become independently equal to 2).

point, so that two similar movements can be observed.

These bistable damped oscillations are presented in

Fig. 1b.

The third example provides a true supercycle, with

non-damped auto-oscillations (Fig. 1c), obtained by

injection of the modifier allele M (r
MM

¯ 0±5) into a

system that has reached its polymorphic stable point

for loci affecting the selected trait (with the modifier

locus being fixed for m, r¯ r
mm

¯ 0). The attraction

domain of the resulting supercycle in the whole phase

space of the system is very large. Along the limiting

trajectory, the frequency of allele M varies in the

range of 0914–0±971 ; the corresponding range of the

mean rate of recombination will be 0±417! r! 0±471

(assuming Hardy–Weinberg proportions at the

modifier locus). With fixed recombination, for all

values of r from this range, the three-locus selected

system being considered manifested no complex

behaviour. Moreover, with fixed recombination, the

system trajectories go to fixation at any r" 0±05.

Therefore, the polymorphic modifier not only is the

source of complex limiting behaviour; the very

existence of (protected) polymorphism at loose linkage

between the selected loci is possible here only in the

form of CLB, caused by the presence of the

polymorphic rec-modifier.

(b) Super-supercycles caused by interaction of

supercyclical dynamics and modifier mo�ement

This mode of behaviour arises when a polymorphic

rec-modifier is introduced into a system that is itself

capable of manifesting supercyclical dynamics under

some range(s) of the recombination rate. It is a rather

trivial fact that the allele frequencies at the modifier

locus may oscillate with a period equal to that of the
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Fig. 3. Super-supercycles, based on interaction of supercyclical dynamics of four unequal additive selected loci and
polymorphic modifier. The selected system consists of four unequal additive loci (h

i
¯ 0) with d

"
¯ 0±01, d

#
¯ 0±04, d

$
¯

0±16, d
%
¯ 3±4; only single recombination events were allowed within the chromosome segment containing the selected

loci ; r
MM

¯ 0±5, r
Mm

¯ 0±25, r
mm

¯ 0±01 ; the modifier was closely linked to the fourth selected locus, r
c
¯ 0±0005; the

selected optima m
"
¯1±1 and m

#
¯ 0 (n

"
¯ n

#
¯1) ; s¯ 0±17. (a) The supercycle obtained with fixed recombination rate r

¯ 0±25. (b) The phase diagram of the super-supercycle with a polymorphic modifier. (c) Modifier superoscillations
consisting of two separate subsets.

supercycle. However, it appears that, in addition to

this movement, the modifier locus may manifest auto-

oscillations with a much longer period. In turn, the

dynamics of the modifier cause long-periodical

changes of the supercycle itself. A first example of

such dynamics, referred to as ‘super-supercycles ’, was

provided in our previous paper (Kirzhner et al.,

1995b). In that example the model included a modifier

of recombination and a two-locus selected system,

subjected to cyclical selection with a very special

fitness matrix. Here we consider super-supercyclical

dynamics based on a more natural class of models :

multilocus systems subjected to stabilizing selection

with a cyclically moving optimum. Two examples are

provided in Figs. 2 and 3. The supercyclical dynamics

presented in Fig. 2a are robust with respect to changes

of recombination rate approximately in the range

0±002–0±04. Let the recombination rate in the system

now be dependent on the rec-modifier : r
mm

¯ r
mM

¯
0 and r

MM
¯ 0±02. Then, given a certain recombination

level r
c
between the modifier and the selected system

(r
c
¯ 0±01, in the present example), the super-

supercycle shown in Fig. 2b, c will be obtained. It can

be seen that each large period in Fig. 2c consists of

about 20 oscillations corresponding to the initial

supercycles (i.e. the total period of the modifier is

about 1000 environmental periods). The robustness of

the revealed pattern to random disturbances of the

environmental period is also presented (Fig. 2d ) and

considered in Section 4.

The second example concerns a system with

complete positive interference (i.e. only single

exchanges were allowed). The initial supercycle here is

very simple (Fig. 3a). With the polymorphic modifier

the behaviour is much more complex. In the example

of Fig. 3b, c the frequency of crossing-over within the

selected system was r
mm

¯ 0±01, r
mM

¯ 0±25 and r
MM

¯ 0±5. As can be seen, the modifier manifests

superoscillations corresponding to those of the selec-

ted system. However, this behaviour of the modifier

occurs in two rather separate subsets, with transitions

between them occurring in the form of short-time

jumps (Fig. 3c). It is noteworthy that the consequent

visits of the two subsets take tens of thousands of

generations.

(c) The modifier as a cause of chaotization of

population dynamics

In the example presented in Fig. 4, a fixed re-

combination rate resulted in CLB solely in the form of

supercycles (and only in the indicated range of r).

Only simple fixed points were found for r values

corresponding to mm and MM states of the modifier

(Fig. 4a). The situation may change dramatically

when the selected system is complemented by a

polymorphic rec-modifier. For example, coevolution

of the modifier and the selected system may result in

a complex attractor like that presented in Fig. 4b.

This example was tested with respect to the sign of the

Lyapunov exponent, L (Wolf et al., 1985). It appeared

that LE 0±04" 0, so that the corresponding CLB can

be classified as chaotic (Hastings et al., 1993). It is

noteworthy that this phenomenon does not mean that

any kind of CLB should be characteristic of the

system with fixed r corresponding to either mm or

MM. However, one may assume that the existence of

a range of such r values is ‘exploited’ by the system

with polymorphic recombination to produce more

complex limiting patterns.

(ii) Modifiers with an une�en distribution of effects

along the chromosome

Weconsider two situations: (a)modification of linkage

between blocks of linked loci, with no effect on
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Fig. 4. Transformation of a simple supercyclical dynamics into a complex attractor when a fixed recombination rate (r
¯ const) is replaced by a polymorphic modifier. The selected system consists of three equal semi-dominant loci (d
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diagram of the system with a polymorphic modifier (r

MM
¯ 0±1, r
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¯ r
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¯ 0, r

c
¯ 0±01).
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Fig. 5. Complex dynamics with an uneven distribution of the modifier effects along the chromosome. (a)–(c) Modifier
affects recombination between blocks but not within the blocks. The selected system consists of two blocks of linked
purely additive loci (h

i
¯ 0), ²d

"
¯ 0±2 and d

#
¯ 0±2´, ²d

$
¯ 0±5 and d

%
¯1´, s¯ 0±25, r

w
¯ 0±1, m

"
¯1±65, m

#
¯ 0±2 (n

"
¯ n

#¯1). (a) Fixed recombination rate between the blocks r¯ 0±0001 (we found cyclical behaviour of the system at
0% r% 0.42). (b) and (c) r

MM
¯ 0±5, r

Mm
¯ r

mm
¯ 0±1 ; r

c
¯ 0±01. (d )–( f ) Modifier affects recombination within the

blocks but not between the blocks. The selected system consists of two blocks of linked loci ²d
"
¯1±8, h

"
¯ 0±3; d

#
¯1±0,

h
#
¯®0±7´ and ²d

$
¯1±0, h

$
¯®0±69; d

%
¯1±8, h

%
¯ 0±32´, recombination between the blocks r

b
¯ 0±3, m

"
¯ 6±055,

m
#
¯ 0±1 (n

"
¯ n

#
¯1), s¯ 2±01. (d ) Fixed recombination rate within the blocks r¯ 0±001. (e) and ( f ) r

MM
¯ 0±02, r

Mm
¯

r
mm

¯ 0; r
c
¯ 0±01 is the distance between the modifier and the fourth selected locus.

recombination within blocks; and (b) modification of

linkage within blocks of tightly linked loci, with no

effect on recombination between blocks.

(a) Modification of linkage between blocks of linked

loci, with no effect on recombination within blocks

In the example presented in Fig. 5a–c the selected

system consists of purely additive loci with unequal

effects and the modifier is linked to the locus with the

strongest effect on the selected trait. The resulting

CLB (Fig. 5b, c) was classified as a chaotic attractor,

because the Lyapunov exponent is definitely positive

here (LC 0±01) and initially close starting points

produce divergent trajectories. We have also con-

sidered the same selected system with the modifier

linked to the selected locus with smallest effect.

Clearly, these situations are not equivalent : the rate of

change of the strongest locus is higher than that of

weaker loci, which may seriously affect the system

dynamics because of ‘ inertia-like’ effects caused by
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linkage between the modifier and the selected loci

(Kirzhner et al., 1995b ; see also Section 4). Indeed,

the resulting attractor manifested much simpler

dynamics (a super-supercycle with L¯ 0; not shown).

(b) Modification of linkage within blocks of tightly

linked loci, with no effect on recombination between

blocks

This situation of recombination modification is

complementary to that considered in the previous

section, where the modifier controlled the recom-

bination rates between blocks but had no effect on

within-block recombination. The difference between

configurations when the modifier is closer to the locus

with the strongest or, conversely, the smallest effect,

was stressed there. The structures of the systems

considered in the current section allow for a further

complication of the ‘genetic inertia ’ effects. Our initial

motivation was in fact to consider such structures.

Indeed, the fate of a genetic modifier, including a

modifier of recombination, may strongly depend on

its linkage to the selected loci (see Section 4). The

proposed structures provide an interesting oppor-

tunity to analyse the behaviour of the modifier and the

whole system when two contrasting versions of

modifier linkage to the selected blocks exist sim-

ultaneously in the system, i.e. linked and freely

recombining. Note that from the viewpoint of re-

combination evolution modelling, this type of system

is much more realistic than multilocus systems with

one linkage group: it is natural to assume that loci

affecting fitness-related quantitative traits are spread

over more than one locality of a multichromosomal

genome (Lewontin, 1974; Korol et al., 1994). It also

fits the concept and corresponding evidence for ‘fine’

control of recombination (Simchen & Stamberg, 1969;

Chinnici, 1971). In the example presented (Fig. 5d–f ),

with two unlinked blocks, only damped superoscil-

lations were observed for the phase variables with

fixed recombination (at r¯ 0±014). In the system

polymorphic for the rec-modifier, the complex dy-

namics become stable (Fig. 5e, f ).

4. Discussion

(i) The phenomenon

We have shown earlier that simple cyclical selection

for a trait controlled by multiple additive, dominant

or semi-dominant loci can result in extremely complex

limiting behaviour (CLB) of diploid population

trajectories (Kirzhner et al., 1996, 1998a, b). The

recombination rate proved to be a key factor affecting

the mode of CLB and the existence of CLB. Therefore,

we have considered here a generalized and more

natural model : the fixed recombination rate was

replaced by a polymorphic recombination modifier.

The effect of such a replacement on CLB has already

been analysed for a more specialized two-locus system

(Kirzhner et al., 1995b).

Several types of rec-modifiers were considered in

this paper: (1) modification of recombination rates in

all intervals of a chromosome; (2) modifiers with an

uneven distribution of effects, including modification

of linkage between blocks of linked loci, with no

within-block effect, and modification of linkage within

blocks of tightly linked loci, with no between-block

effect. The modifier-dependent changes included: (a)

supercyclical dynamics due to the rec-modifier in a

system that does not manifest CLB when recom-

bination rate is a fixed parameter ; (b) the appearance

of a new level of superoscillations (super-supercycles)

in a system that manifests supercycles under fixed

modifier ; (c) chaotization of the regular supercyclical

dynamics. While the attractors of the first two types

seem to be rather complex, trajectories starting from

neighbouring initial points do not diverge. Moreover,

the domain of attraction of these movements appeared

to be quite large, sometimes manifesting a nearly

global stability. To a large extent this phenomenon is

due to polymorphism at the modifier locus. Namely,

with fixed r at the level corresponding to CLB for the

selected system itself, if CLB exists at all in such a

case, the CLB-attracting domain in corresponding

phase space may be smaller. This effect was also

observed in our former study of CLB with poly-

morphic rec-modifier for a more specialized regime of

cyclical selection (Kirzhner et al., 1995b). It is

noteworthy that the modifier locus is an active

participant in the observed complex non-monotonic

limiting movements, although its dynamics may have

some specific components that differ from those of the

selected loci (e.g. Figs 2, 3).

An important aspect characterizing the described

pattern is its robustness with respect to changes in the

parameters. In general, this question could be

addressed in relation to the dynamics of the selected

system with either fixed or polymorphic recombi-

nation. We have recently shown (Kirzhner et al.,

1998b) that, with a fixed recombination rate, CLB

may be quite a robust phenomenon, resistant to

variation in parameters characterizing: (i) the effect of

the selected loci (d
i

and h
i
) ; (ii) the rate of re-

combination; (iii) the intensity of selection; (iv) the

optima for the trait ; (v) random disturbances in the

period length and optima; and (vi) random

fluctuations of haplotype frequencies due to drift

(caused by finite population size). These results are

also true for CLB patterns manifested by population

models with polymorphic recombination modifiers. In

particular, all the examples provided in Figs. 1–5

manifest CLB not only with the parameter values
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provided in the legends, but also over some range of

these parameters. For instance, the system of three

purely additive selected loci of non-equal effects in

Fig. 1c, where the modifier locus is the source of CLB,

manifests the observed pattern not only for the values

of d
"
–d

$
presented, but also for a range of in-

dependently varying values of d
i

(i¯1, 2, 3) (up to

about 10% for d
"

and d
#

and 2–3% for d
$
; not

shown). Another example is a system of three

equidistant selected loci of equal effects d
"
¯ d

#
¯ d

$

¯1, period p¯ n
"
­n

#
¯1­1 with optima m

"
¯ 3±2

and m
#
¯ 0±2 and s¯1±1. At fixed recombination rate

(in the range 0–0±01) this system manifests either

supercyclical auto-oscillations or convergence to a

fixed point for any h
i

(i¯1, 2, 3) from the interval

[0±06–0±12]. With a polymorphic modifier (r
MM

¯
0±01, r

Mm
¯ r

mm
¯ 0; r

c
¯ 0±001), we observed more

complex, chaotic-like dynamics for any combination

of h
i
values taken independently from the foregoing

range [0±06–0±12].

The phenomenon of super-supercycles appeared to

be qualitatively resistant to moderate random dis-

turbances of the environmental period. In the model

presented in Fig. 2, the period structure of the initial

process was n
"
¯ n

#
¯1. In the disturbed process,

with a probability of π along the trajectory, n
"

or n
#

become independently equal to 2. One can easily see

(compare Fig. 2c and 2d ) that the supercyclical mode

of the dynamics is preserved at least for π¯ 0±1.

(ii) Proposed mechanism

How can the innate ability to generate supercycles

affect the fate of modifiers in the population? To

explain the observed phenomenon of a further

complication of CLB with the introduction of a

polymorphic rec-modifier (birth of a super-supercycle

in a system already manifesting super-auto-oscil-

lation), we proposed earlier a new notion of ‘genetic

hysteresis ’ (Kirzhner et al., 1995b). This reflects the

fact that, under super-supercyclical movement, the

characteristics of the system dynamics depend not

only on the position of the system’s coordinates in the

phase space, but also on the direction of this movement

(e.g. whether the frequency of an allele for higher

recombination rate is increasing or decreasing over

the specific part of the trajectory). Linkage of the

modifier locus to the selected system, a kind of an

‘ inertia factor’, proved to be the key component

determining the main characteristics or even the very

possibility of such a pattern.

For different types of genetic modifiers, it is known

that the mode of modifier dynamics and the evol-

utionary stable level of the modified parameter (e.g.

the rate of recombination or mutation) can critically

depend on its linkage to the selected system (reviewed

in Korol et al., 1994; Feldman et al., 1997). As regards

a rec-modifier, the general conclusion is that close

linkage promotes a more rapid spread of the allele

enhancing recombination. In a model with a varying

environment, Charlesworth (1976) observed an

increased rate of the recombination-enhancing allele

when the modifier was linked to the selected loci. He

has also established that, for long periods of en-

vironmental fluctuation, situations are possible when

the intensity of linkage of the modifier with the

selected loci affects not only the rate but also the

direction of its dynamics. If the modifier is unlinked to

the selected loci then the recombination-enhancing rec

allele is eliminated from the population, and if it is

linked then it becomes established. The same effect

was observed in a selection–mutation balance model

(Feldman et al., 1980). An increase in the equilibrium

recombination value with a closer linkage of the rec

locus with the selected system has also been reported

for a haploid model with a varying environment

(Sasaki & Iwasa, 1987). It is generally assumed,

probably under the influence of the above results, that

linkage enhances the intensity of selection for

increased recombination (Brooks, 1988). However,

our previous results showed that an opposite trend

may be characteristic of cyclical selection with short

period (Korol et al., 1990, 1994). In such a situation

selection for increased r is most effective when the rec

locus is unlinked or loosely linked to the selected

system. Tighter linkage can alter the direction of

change, resulting in the fixation of the allele reducing

recombination. With a longer oscillation period, i.e.

with a more stable environment, intermediate linkage

is optimal in terms of selection for increased r. Finally,

in a still more stable environment with long periods of

constant conditions, selection for recombination is

most effective under tight linkage (see Korol et al.,

1994, pp. 208–12). Table 1 illustrates this effect for a

situation when the selected trait depends on three

tightly linked loci. Similar results were obtained also

for multilocus selection in host–parasite systems

(Preygel & Korol, 1990; Korol et al., 1994, p. 250; but

for mutation modification in such systems see

Haraguchi & Sasaki, 1996). One could easily see the

opposite effects of the intensity of linkage between the

modifier and the selected loci on the modifier dynamics

for long- and short-period selection regimes.

The consideration of modifier linkage to the selected

loci allows us to suggest a simple heuristic explanation

of the effects of the modifier on CLB. For that, we

should recall first the ‘ low-pass filter effect ’ described

for evolution of modifiers of recombination rate

(Sasaki & Iwasa, 1987) and mutation modifiers (Ishii

et al., 1989). It was found that in a system subjected to

fluctuating selection with a mixture of oscillations

with different period lengths, the fate of the modifier

is determined mainly by the lowest frequency com-

ponent. In our models, we have two components of
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Table 1. Dynamics of a recombination modifier in a cyclically �arying en�ironment as a function of linkage

between the modifier and the selected system

Period length
M is recessive M is additive

p¯ n
"
­n

#
­n

$
­n

%
r
c

P!
M

U 0±050 0±950 0±050 0±950

System 1
4¯1­1­1­1 0±01 0±023 0±057 0±000 (440) 0±001

0±05 0±030 0±101 0±000 (717) 0±046
0±1 0±034 0±228 0±001 0±383
0±2 0±043 0±680 0±012 0±849
0±5 0±056 0±990 0±134 0±977

System 2
40¯19­1­19­1 0±01 0±035 0±143 0±004 0±143

0±05 0±055 0±903 0±121 0±942
0±1 0±061 0±988 0±217 0±976
0±2 0±053 0±963 0±077 0±956
0±5 0±046 0±854 0±021 0±911

80¯ 39­1­39­1 0±01 0±999 1±000 (721) 1±000 (645) 1±000 (721)
0±05 1±000 (382) 1±000 (118) 1±000 (461) 1±000 (118)
0±1 1±000 (715) 1±000 (173) 1±000 (871) 1±000 (173)
0±2 0±152 0±999 1±000 (723) 0±999
0±5 0±040 0±412 0±004 0±412

The selected system (three equidistant loci) was allowed to reach equilibrium with fixed recombination at P
M

¯ 0 or P
m

¯
0 (with haplotype frequencies in consecutive periods differing by less than 10−* for any moment along the period). Then, the
alternative modifier allele was injected at a small frequency (0±05) and with no linkage disequilibria relative to selected loci.
The frequency of the M allele after 1000 periods (or the number of periods needed to achieve fixation at the modifier locus,
indicated in parentheses) was used to assess how the level of recombination r

c
between the modifier and selected system affects

dynamics. System 1 : d
"
¯ d

#
¯1, d

$
¯ 2, h

"
¯ h

#
¯ 0, h

$
¯ 0±8; m

"
¯ 9, m

#
¯m

%
¯1 and m

$
¯ 0, s¯ 3; system 2: d

"
¯ d

#
¯

d
$
¯1, h

"
¯ h

#
¯ h

$
¯ 0±6; m

"
¯ 3±2, m

#
¯m

%
¯ 2±7 and m

$
¯ 2±0, s¯1±5; in both systems, r

MM
¯ 0±01 and r

mm
¯ 0.

the selected system dynamics : (i) forced oscillations

with a short period caused by strong-to-moderate

cyclical selection; and (ii) low-frequency movements

(e.g. supercycles consisting of hundreds or even

thousands of environmental periods). Under close

linkage of the modifier to the selected system, the first

component promotes selection towards lower re-

combination whereas the second component induces

selection for higher recombination alleles (Korol et

al., 1990, 1994). In contrast, under moderate or loose

linkage the first component may result in increased

recombination while the outcome of low-frequency

oscillations will be reduced recombination

(Charlesworth, 1976). Thus, the effects of oscillations

of very low and very high frequencies on the modifier

are opposite. According to the principle of Sasaki &

Iwasa (1987), in such conditions the fate of the

recombination modifier should depend mainly on the

second (low-frequency) component. However, along

the trajectory, the modifier itself is evolving, which

may result in a reduction of the ‘current ’ amplitude of

the low-frequency movement. On such intervals of

system trajectory, the high-frequency component

determines the dynamics of the modifier, preparing

the conditions for the next phase. Such a dynamic

balance may generate different modes of limiting

behaviour considered in the foregoing examples.

To demonstrate that this mechanism is relevant to

our system with recombination evolution directed

simultaneously by short-period forced oscillations

and long-period auto-oscillations, the following

artificial construction was considered. The observed

auto-oscillatory long-periodical movement was

replaced by ‘external ’ long-periodical changes in the

selected optimum, so that the cyclical selection regime

is composed of high- and low-frequency oscillations

(Fig. 6). The short period was determined by

alternation of the optima m
"
and m

#
(n

"
¯ n

#
¯1, i.e.

short period length was p¯ 2). Slow oscillations

(p¯ 40) were simulated by changing the optima

according to m
"
¯ 3±0²1­sin[2πt}40]}3´ and m

#
¯

0±3²1­sin[2πt}40]}3´, where t denotes ‘ time’ along

the trajectory measured as the number of short

periods passed. In this example, the modifier is closely

linked to the selected system (r
c
¯ 0±05), hence the

allele of higher recombination goes to extinction if the

system is subjected only to short period (p¯ 2)

selection (not shown). The same result was obtained

when the short period was complemented by long-

term oscillations (each including 20 short periods).

The direction of the modifier dynamics is opposite if

the long-term period includes 40 short periods. At r¯
r
mm

¯ 0 the selected systems subjected to the two-

component forced oscillations converges to the at-
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0

1

P1

(a)
Ω1

Ω1
Ω2

0 2000

1·0

0·05

Environmental periods

PM

(b)

Fig. 6. The effect of a composition of high- and low-frequency forced oscillations on the fate of a recombination
modifier closely linked to the selected system. The selected system consists of three equal semi-dominant loci (d

i
¯1), h

"¯ h
#
¯ 0±36, h

$
¯ 0±4, s¯1±6; r

MM
¯ 0±01, r

Mm
¯ r

mm
¯ 0, r

c
¯ 0±05. As before, the changes in allele frequencies are

shown over the short environmental periods.

tractor Ω (Fig. 6a) ; Ω
"
can be considered an analogue

of the supercycle. If allele M is injected at a low

frequency (0±05) when the system has reached Ω
"

(after 2000 short periods), then the system will evolve

towards a new attractor Ω
#

(Fig. 6a) and M goes to

fixation (Fig. 6b ; the moment of injection is denoted

here by 0).

How could these ‘elementary’ processes produce a

super-supercycle? For another type of selected system

(two-locus cyclical selection defined by alternating of

two fitness matrices), we found that such a regime can

arise in the vicinity of a fixed polymorphic point if its

stability depends on recombination rate (Kirzhner et

al., 1995b). We believe that this is generally the major

factor in the modifier effect on CLB. In principle, if

the spectral radius of the linear approximation of the

evolutionary operator at this point is close to unity

and the maximum eigenvalue is complex, then a

cyclical regime is possible (see Kirzhner et al., 1998b).

Moreover, if the spectral radius varies with the rate of

recombination, then the resulting auto-oscillations

may undergo a long-term evolution along the tra-

jectory together with and due to the polymorphic

recombination modifier. That was precisely the scen-

ario in the model presented in Kirzhner et al. (1995b).

On this basis we can interpret the super-supercyclical

behaviour of the model presented in Fig. 4a–c. For a

series of fixed recombination rates (r) the following

eigenvalues with maximum module were found:

(1) r¯ 0±002, λ¯1±0173³0±1333i, rλr¯1±026

"1 ;

(2) r¯ 0±007, λ¯1±0092³0±1299i, rλr¯1±017

"1 ;

(3) r¯ 0±01, λ¯ 0±9908³0±1158i, rλr¯ 0±9975

!1.

Therefore, at r¯ 0±01 slow damping oscillations

should arise. At two other values of r stable supercycles

are possible and we indeed observed these CLBs. Note

that, in accordance with the spectral radius rλr, the

amplitude of the supercycle 1 is larger than that of

supercycle 2. Let the modifier be polymorphic and

closely linked to the selected system (r
c
¯ 0±01 in our

example). If the initial mean value of r is large enough,

then small damping auto-oscillations will arise,

promoting evolution towards lower recombination

(due to the effect of short forced oscillations and close

linkage of the modifier to the selected system, as in the

system of Table 1). According to the foregoing spectral

properties, the amplitude of the low-frequency auto-

oscillations will tend to increase together with the

frequency of the allele for low recombination. When

this amplitude becomes large enough, it could counter

the effect of short forced oscillations and reverse the

direction of change of the modifier frequency (like the

effects presented in Fig. 6 and Table 1). The reverse

dynamics at the modifier (towards increased recom-

bination) will reduce the spectral radius of the fixed

point, resulting in a trend of decreasing amplitude of

the supercycle, and then the whole process is repeated.

(iii) Implications for the e�olution of recombination

The two-level auto-oscillations obtained here, caused

by (a) reaction of the multilocus system to cyclical

selection, and (b) the modifier dynamics, allow us to

make some suggestions about the possible role of

recombination and sex in complex population dy-

namics. The majority of results on complex dynamics

in population biology come from ecology (for review

see Hastings et al., 1993). The main source of complex

dynamics patterns in population genetics is frequency-

dependent selection in single (Charlesworth, 1971 ;

Roughgarden, 1971 ; Loeschcke & Christiansen, 1984;

Altenberg, 1991) and (mainly) two- or multiple-

species interactions (May & Anderson, 1983; Bell &

Maynard Smith, 1987; Preygel & Korol, 1990;

Hamilton, 1993; Korol et al., 1994; Kirzhner et al.,
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unpublished data). One of the generalizations derived

recently from a study of single-locus ecological-genetic

models with restricted mixing was that sex reduces the

likelihood of complex dynamics and chaos (Ruxton,

1995, and references therein). This conclusion partially

corresponds to our results presented here and in

previous papers on cyclical selection (Kirzhner et al.,

1996, 1998a, b). Sexual reproduction includes two

major components : syngamy and meiotic recom-

bination. Our results concern the effect of the second

component. The question then is whether more

recombination indeed means less complexity. We

found that, in general, the appearance of CLB is

associated with smaller rates of recombination. How-

ever, this dependence is not necessarily a monotonic

one; at r¯ 0 CLB is a rare phenomenon (see, for

example, the bifurcation diagram in fig. 4 in Kirzhner

et al., 1996). Likewise, in some of the examples

presented here, the presence of a high recombination

allele (e.g. r
MM

¯ 0±5) was an obligatory condition for

a robust manifestation of CLB.

The last question that we would like to discuss is the

possible role of the CLB phenomenon in recom-

bination evolution. The described CLB patterns

resulted from high-frequency forced oscillations of the

optimum value of the fitness-related trait. It is known

that in such conditions only very strong selection can

provide evolution towards increased recombination

(Korol & Preygel, 1989; Korol et al., 1990, 1994;

Charlesworth, 1993; Kondrashov & Yampolsky,

1996). The high genetic load needed to promote

increased recombination is one of the major difficulties

when temporal (cyclical or stoachastic) environmental

fluctuations are to be considered as a causal factor

(Otto & Michalakis, 1998). Another obstacle is the

presumed inability of fluctuating selection to preserve

polymorphism, a precondition of recombination

evolution (Kondrashov, 1993). We found earlier that

this is not really a serious obstacle : stabilizing selection

with a cyclically varying optimum for a quantitative

trait that depends on purely additive or semi-dominant

genes with non-equal effects leads to local poly-

morphism stability, with a sufficiently large poly-

morphism attracting domain (Korol et al., 1994,

1996). Analysis of this model shows that the demands

for a selection strength sufficient to promote evolution

towards increased recombination can be significantly

relaxed if the effect of linkage of rec-modifier with

trait loci is taken into account (Korol et al.,

unpublished data). For example, the selection regimes

for system g2 in Table 1 correspond to geometric

mean fitnesses W¯ 0±78–0±82 (although other ex-

amples, with W¯ 0±85–0±90, can easily be produced).

The interaction described between short-period

forced oscillations and long-period auto-oscillations

allows us to propose the following mechanism. The

main explanation of the putative role of sex and

recombination in a frequently varying stressful en-

vironment involves the changing sign of preferred

linkage disequilibria (Charlesworth, 1976; Maynard

Smith, 1978; Sasaki & Iwasa, 1987; Barton, 1995).

For the model of abiotic selection in question, this

type of environmental change is very challenging

because strong selection is needed to promote re-

combination. Directed changes or slow periodical

variations in the selected optimum are more efficient

(Charlesworth, 1993; Barton, 1995). Then increased

recombination can become advantageous by facili-

tating the changes in allele frequencies at selected loci.

This mechanism may virtually take place in our CLB

dynamics. Indeed, as we can see from the phase

diagrams (Figs. 1–5), the supercyclical dynamics was

manifested as slow changes of allele frequencies at the

selected loci along the trajectory (comprising tens or

hundreds of generations). Actually, this means that

the mean value of the selected trait can undergo

corresponding slow changes. Indeed, in the model of

Fig. 2, the mean value of the trait at the environmental

state 1 (where the selected optimum was 3±30) varies

along the supercycle within the range 1±86–1±98, and

at state 2 (selected optimum 0±3) within the range

1±25–1±52, whereas the mean value averaged over the

environmental period varied from 1±56 to 1±74. In the

model of Fig. 3 we have, correspondingly: 0±28–0±39

for state 1 (selected optimum 0), 0±72–0±82 for state 2

(selected optimum 1±1), and an average over the

period of 0±51–0±59. This low-frequency dynamics

may favour non-zero (or high) recombination pro-

vided there is a close enough linkage of the modifier to

trait loci (or to some of them). For example, if the

parameter h
$
¯ 0±4 is replaced either by h

$
¯ 0±3 or h

$

¯ 0±5, then stable polymorphism instead of a super-

cycle will be obtained and the modifier evolves towards

zero recombination. The same result will be obtained

if d
$
¯1 is replaced by either d

$
¯1±1 or d

$
¯ 0±9.

Therefore, the ability to manifest supercyclical dy-

namics prevents fixation of the zero recombination

allele at the modifier locus. The foregoing effect of

low-frequency movements on recombination induced

by high-frequency forced oscillations may be im-

portant even if it is manifested in an imperfect form,

e.g. as damping super-oscillations that can interact

with stochastic disturbances of the initial (environ-

mental) period length and selected for optima, finite

population size and random mutations. These pro-

cesses may result in a fixation of a high recombination

allele, though the proposed scenario needs further

detailed analysis.
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