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Summary

Temporally varying selection is considered to be one of the potential mechanisms of recombination
evolution. We found earlier that simple cyclical selection for a trait controlled by multiple additive,
dominant or semi-dominant loci can result in extremely complex limiting behaviour (CLB) of
population trajectories, including ‘supercycles’ and more complex attractors. Recombination rate
proved to be a key factor affecting the mode of CLB and the very existence of CLB. Therefore, we
considered here a generalized model: the fixed recombination rate was replaced by a polymorphic
recombination modifier. The modifier-dependent changes included: (a) supercyclical dynamics due
to the recombination modifier in a system that does not manifest CLB when recombination rate is
a fixed parameter; (b) appearance of a new level of superoscillations (super-supercycles) in a
system that manifests supercycles with a fixed modifier; (c) chaotization of the regular supercyclical
dynamics. The domain of attraction of these movements appeared to be quite large. It is
noteworthy that the modifier locus is an active participant in the observed non-monotonic limiting
movements. Interactions between short-period forced oscillations and the revealed long-period
auto-oscillations appeared to result in new regimes of recombination evolution (for some range of
linkage between the modifier locus and the selected system), as compared with those caused by the

forced oscillations alone.

1. Introduction

The evolution of recombination remains an important
unsolved problem in evolutionary genetics. The results
of experiments on artificial selection for altered
recombination rates (r) suggest that almost every
population has enough stored genetic variability to
ensure response to selection for changed r (reviewed in
Brooks, 1988 ; Korol et al., 1994). Theoretical analysis
shows that under stable environmental conditions a
panmictic population polymorphic for fitness-related
loci should evolve towards the minimum possible level
of recombination. Namely, introduction of a new
modifier allele affecting r into an equilibrium poly-
morphic population is accompanied by an increase in
its frequency if it reduces r (Zhivotovski et al., 1994;
Barton, 1995). Hence, factors should exist opposing
this trend. Moreover, there is some evidence for a
possible negative correlation between an individual’s
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fitness and the level of meiotic recombination in the
same individual (Zhuchenko & Korol, 1985;
Zhuchenko et al., 1986; Cvetkovic & Tucic, 1986).
This implies that the problem of identifying factors
ensuring the maintenance of non-zero (and/or poly-
morphic) recombination within natural populations is
even more complicated than anticipated.

A series of models have been proposed to explain
the evolutionary mechanisms responsible for the
persistence of recombination (and sex in general) in
nature. These include selection in variable abiotic
conditions, selection against harmful mutations and
frequency-dependent selection caused by interaction
between antagonistic species (for reviews and classi-
fications of the models see: Maynard Smith, 1988«;
Kondrashov, 1993; Korol et al., 1994; Otto &
Michalakis, 1998). The basis of these models is the
assumption that the gene pool is subjected to variable
conditions (either external, due to changes in the
selection regime, or internal, due to the mutation
process). Previous theoretical studies have shown that
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temporal environmental variation can indeed promote
increased recombination, although the revealed
patterns appear to be very complex (Charlesworth,
1976, 1993; Maynard Smith, 1980, 19885 ; Sasaki &
Iwasa, 1987; Bergman & Feldman, 1990; Barton,
1995; Korol & Preygel, 1989; Korol et al., 1994,
Kondrashov & Yampolsky, 1996; Feldman et al.,
1997). A few experimental studies and observations
have shown that selection for adaptively important
traits may indeed result in changes in the recom-
bination system, e.g. in an increased rate of re-
combination (Flexon & Rodell, 1982; Burt & Bell,
1987; Wolf et al., 1987; Gorodetsky et al., 1990;
Gorlov et al., 1992; Korol & Iliady, 1994 ; Derzhavets
et al., 1996; Saleem et al., 1998).

A Mendelian population subjected to a strictly
cyclical selection regime is expected to manifest one of
the following two modes of dynamics at the selected
loci: (1) stable forced oscillations for all loci, with a
period equal to that of the environment (Korol ez al.,
1996); or (2) fixation for some or all of the loci.
Taking any point within the period as a ‘phase point’,
we can refer to the first situation as ‘stable poly-
morphism’ and to the second as ‘fixation’. In other
words, by considering the time scale in terms of
environmental periods, the first case could be trivially
classified as a polymorphic stable point (Kirzhner et al.,
19954). We have shown earlier that simple cyclical
selection for a trait controlled by multiple additive,
dominant or semi-dominant loci can result in ex-
tremely complex limiting behaviour (CLB) of diploid
and haploid population trajectories (Kirzhner et al.,
1996, 1998, b). Such behaviour was observed for a
broad range of system parameters.

The foregoing studies have shown that recom-
bination rate strongly affects the mode of CLB and
the existence of CLB. Therefore, it should be both
interesting and instructive to analyse how this
phenomenon will be expressed when, instead of a
fixed parameter r, the rate of recombination is a
genetically controlled trait, dependent on a poly-
morphic modifier (‘rec-modifier’). A stronger mo-
tivation to analyse such models comes from the general
interest in the evolution of sex and recombination.
Indeed, the foregoing results on CLB were obtained
with standard models of stabilizing selection with a
cyclically moving optimum — exactly the same models
that have been employed in models of recombination
evolution in changing environments (Maynard Smith,
1980, 1988a; Korol & Preygel, 1989; Charlesworth,
1993; Korol et al., 1994; Barton, 1995).

We have previously analysed the effect of a rec-
modifier on the behaviour of a two-locus population
with a special fitness matrix that manifested super-
cyclical oscillations with a very long period (Kirzhner
et al., 1995b). Introduction of a polymorphic modifier
resulted in the emergence of a higher level of
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oscillations (referred to as ‘super-supercycles’). That
is, the modifier itself manifested some cyclical be-
haviour, such that the full period of the modifier
trajectory consists of many dozens or even hundreds
of supercycles. With respect to the forces affecting
modifier dynamics in CLB systems, one should take
into account the following factors: short-period
environmental oscillations causing a corresponding
movement of haplotype and allele frequencies, super-
cyclical auto-oscillations with a long period (as a
rule), and the linkage of the modifier to the selected
system.

This approach is applied here to our standard CLB
models based on cyclical selection for a trait controlled
by multiple additive, dominant or semi-dominant loci
(see Kirzhner et al., 1996, 19985b). We analyse the
dynamics of multilocus systems with polymorphic rec-
modifiers subjected to cyclical selection. The par-
ameter sets are chosen in such a way that the selected
system manifests relatively simple modes of CLB
(supercycles) or a stable polymorphism (in the sense
explained above). Different types of rec-modifiers will
be considered: (1) modifiers of recombination in all
intervals of a chromosome; (2) modifiers with a non-
even distribution of the effects, including: (i)
modification of linkage between blocks of tightly
linked loci, with no effect on the within-block
recombination; and (ii) modification of linkage within
blocks, with no effect on recombination between the
blocks.

2. The model

We examine the behaviour of an infinite population
with panmixia, non-overlapping generations and
several diallelic loci, 4,/a, (i=1,..., L), affecting the
selected trait, u, plus a modifier M/m which is neutral
with respect to u but affects the rate of recombination
between A,/a,. Consider a genotype g with u = u(g)
defined as: u(g) = Z,u,(g), where the effect of the ith
locus of genotype g is specified as:

d;, for 4,4, (d, > 0),

u(g)=d1+h)/2, forAd,a,(—1<h,<1),

0, for a; a,.

Clearly, this scheme describes additive control of the
selected trait u across loci, with an arbitrary level of
dominance within loci; the heterozygous deviation is
h,. For cyclical selection, the fitness w,() of a genotype
with trait value # and environmental state ¢ is defined
by the fitness function

wu(g)) = Fu(g)—z,),

where z, is the optimum at state ¢. For example, one
can use F(u(g)—z,) = exp{—[u(g)—=z]?/s%, a fitness
function that is widespread in population genetics.
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The evolutionary equations for the environmental
state ¢ can be written in the standard form:

X, = Zwt(“(gz‘j)) B, X xj/ W, (D

where x and x’ are gamete frequencies in adjacent
generations; W is the mean fitness; and P, ,, > 01is the
probability of producing gamete m by a genotype g,;
resulting from the union of gametes i and j, XP, , =
1. The frequency P, ,, of haplotype m can easily be
calculated as a sum of the frequencies of elementary
events resulting in its appearance from the zygote g,
Clearly, P, , depends on the recombination
parameters, determined by the modifier locus. Com-
puter modelling was based on iterations of (1) for
L+1 loci (L selected and the modifier).

3. Results

(1) Modification of recombination rates in all
intervals

For the sake of simplicity, let us assume equidistant
distribution of the selected loci in the chromosome,
and equal effects of the modifier locus on recom-
bination in each interval. We consider here a special
mode of CLB of the selected system — supercycles — as
a basis for analysing the complications caused by the
introduction of a polymorphic modifier into the
system. The usual way to study the fate of the modifier
locus, especially when using analytical tools, is to
introduce at a low frequency a new modifier allele
after reaching a (polymorphic) steady state for the
selected system (Feldman er al., 1997). We are
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interested in following the full dynamics; hence
starting the trajectories at arbitrary polymorphic
initial points allows us to evaluate the volume of the
CLB attraction domain. Three quite different types of
rec-modifier effects on CLB will be demonstrated: (a)
modifiers as the source of CLB; (b) modifiers as a
source of the ‘next level” of CLB (super-supercycles);
(¢) modifiers as a factor in the chaotization of
population dynamics.

(a) Modifiers as the source of CLB

The major part of the results in this paper concerns
the mode of modifier evolution as dependent on the
system dynamics, referred to as CLB. Therefore, the
existence of CLB in the system with a fixed modifier is
the precondition of such a consideration. However, an
important question is whether or not the presence of
a polymorphic modifier may by itself be the factor
producing CLB. In other words, would it be possible
to obtain CLB by injection of a new modifier allele
into a system that is incapable by itself of manifesting
this mode of dynamics at any fixed value of
recombination? As an example, consider a model with
three slightly dominant loci with non-equal effects on
the selected trait, in which no CLB was found in
computer simulations at any 0 <r <05 With a
polymorphic modifier (r,,,, =0, r,,,, = 0-05, and r,,,,
= (-5), the system manifests supercyclical damped
oscillations (Fig. 1a). A slight alteration of the
parameters results in similar system behaviour, the
only difference being the appearance of a second such
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Fig. 1. Modifiers as a cause of supercyclical behaviour. The selected system consists of three additive loci (i.e. /1, = 0)
with unequal effects. P, is the frequency of the allele with a positive effect on the trait at locus i. (¢) Damped oscillations.

d =12, d, =205 d,=4075; s =176;r, =0,7r,,

=005, r,,,, = 0-5; r, = 0-1. The optimum trait values in four

environmental states (each continued for one generation, n, = n, = n, = n, = 1) were m, = 678, m, = 3-76, m, = 0-1 and
m, = m,. (b) ‘Bistable’ damped oscillations (starting from different initial points). d, =1, d,=2,d, =4;s=175;r,, =

0, r

Mm

mm

= 0-05, r,,,, = 0-5; r, = 0-1. The optimum trait values in four environmental states (n, = n, = n, = n, = 1) were m,

=68, m, = 3-5, my = 0-1 and m, = m,. (¢) Stable supercycle. The parameters of the model are: d, =2, d, = 13, d, = 4;

s=13;r,,=05r

mm — Tmm

Foom =0,7.=01;n =n,=1,n,=0; m =71, my = 0-05. The initial part of the trajectory

was obtained with the modifier fixed with r =r, = 0. The trajectory converged to a polymorphic stable point marked

mm

by the arrow. Then an alternative allele M (r,,,, = 0-5) was injected into the system (with a low initial frequency). The
period of the resulting supercycle is about 360 environmental periods.
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Fig. 2. Super-supercycles, based on interaction of supercyclical dynamics of three semi-dominant selected loci and a
polymorphic modifier. The selected system consists of three equal semi-dominant loci (d, = 1), h, = 0-3, h, =03, h, =
04; ry, =002, 1y, =7,,, =0, r, =0-01; the selected optima were m, = 3-3 and m, = 03 (n, = n, =1), s = 0-84. (a) The
phase diagram of the initial supercycle (the modifier is fixed for MM); the period of this supercycle is about 60
environmental periods. () The phase diagram of the system with polymorphic modifier. (¢) The super-supercyclical
dynamics of the modifier (represented across environmental periods). The brackets mark the points of a failure of
stability of the basic supercycle caused by the current dynamics at the modifier locus. (d) Resistance of the super-
supercycle to moderate random disturbances of the environmental period (with a probability of 7 = 0-1 along the

trajectory, n, or n, become independently equal to 2).

point, so that two similar movements can be observed.
These bistable damped oscillations are presented in
Fig. 1b.

The third example provides a true supercycle, with
non-damped auto-oscillations (Fig. 1¢), obtained by
injection of the modifier allele M (r,,,, = 0-5) into a
system that has reached its polymorphic stable point
for loci affecting the selected trait (with the modifier
locus being fixed for m, r =r,,,, = 0). The attraction
domain of the resulting supercycle in the whole phase
space of the system is very large. Along the limiting
trajectory, the frequency of allele M varies in the
range of 0914-0-971; the corresponding range of the
mean rate of recombination will be 0417 < r < 0-471
(assuming Hardy—Weinberg proportions at the
modifier locus). With fixed recombination, for all
values of r from this range, the three-locus selected
system being considered manifested no complex

behaviour. Moreover, with fixed recombination, the
system trajectories go to fixation at any r > 0-05.
Therefore, the polymorphic modifier not only is the
source of complex limiting behaviour; the very
existence of (protected) polymorphism at loose linkage
between the selected loci is possible here only in the
form of CLB, caused by the presence of the
polymorphic rec-modifier.

(b) Super-supercycles caused by interaction of
supercyclical dynamics and modifier movement

This mode of behaviour arises when a polymorphic
rec-modifier is introduced into a system that is itself
capable of manifesting supercyclical dynamics under
some range(s) of the recombination rate. It is a rather
trivial fact that the allele frequencies at the modifier
locus may oscillate with a period equal to that of the
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Fig. 3. Super-supercycles, based on interaction of supercyclical dynamics of four unequal additive selected loci and
polymorphic modifier. The selected system consists of four unequal additive loci (h, = 0) with d, = 0-01, d, = 0-04, d, =
0-16, d, = 3-4; only single recombination events were allowed within the chromosome segment containing the selected

=025,

mm

loci; ry,,, =05, 1y,

= 0-01; the modifier was closely linked to the fourth selected locus, r, = 0-0005; the

selected optima m, = 1-1 and m, = 0 (n, = n, = 1); s = 0-17. (a) The supercycle obtained with fixed recombination rate r
= 0-25. (b) The phase diagram of the super-supercycle with a polymorphic modifier. (¢) Modifier superoscillations

consisting of two separate subsets.

supercycle. However, it appears that, in addition to
this movement, the modifier locus may manifest auto-
oscillations with a much longer period. In turn, the
dynamics of the modifier cause long-periodical
changes of the supercycle itself. A first example of
such dynamics, referred to as ‘super-supercycles’, was
provided in our previous paper (Kirzhner et al.,
1995b). In that example the model included a modifier
of recombination and a two-locus selected system,
subjected to cyclical selection with a very special
fitness matrix. Here we consider super-supercyclical
dynamics based on a more natural class of models:
multilocus systems subjected to stabilizing selection
with a cyclically moving optimum. Two examples are
provided in Figs. 2 and 3. The supercyclical dynamics
presented in Fig. 2 a are robust with respect to changes
of recombination rate approximately in the range
0-002-0-04. Let the recombination rate in the system
now be dependent on the rec-modifier: r,,,, = 1, =
0 and r,,,, = 0-02. Then, given a certain recombination
level r, between the modifier and the selected system
(r,=001, in the present example), the super-
supercycle shown in Fig. 25, ¢ will be obtained. It can
be seen that each large period in Fig. 2¢ consists of
about 20 oscillations corresponding to the initial
supercycles (i.e. the total period of the modifier is
about 1000 environmental periods). The robustness of
the revealed pattern to random disturbances of the
environmental period is also presented (Fig. 2d) and
considered in Section 4.

The second example concerns a system with
complete positive interference (i.e. only single
exchanges were allowed). The initial supercycle here is
very simple (Fig. 3a). With the polymorphic modifier
the behaviour is much more complex. In the example
of Fig. 3b, ¢ the frequency of crossing-over within the
selected system was r,,, = 0-01, r,,,, = 0:25 and r,,,,
=05. As can be seen, the modifier manifests

superoscillations corresponding to those of the selec-
ted system. However, this behaviour of the modifier
occurs in two rather separate subsets, with transitions
between them occurring in the form of short-time
jumps (Fig. 3¢). It is noteworthy that the consequent
visits of the two subsets take tens of thousands of
generations.

(¢) The modifier as a cause of chaotization of
population dynamics

In the example presented in Fig. 4, a fixed re-
combination rate resulted in CLB solely in the form of
supercycles (and only in the indicated range of r).
Only simple fixed points were found for r values
corresponding to mm and MM states of the modifier
(Fig. 4a). The situation may change dramatically
when the selected system is complemented by a
polymorphic rec-modifier. For example, coevolution
of the modifier and the selected system may result in
a complex attractor like that presented in Fig. 4b.
This example was tested with respect to the sign of the
Lyapunov exponent, L (Wolf et al., 1985). It appeared
that L ~ 0-04 > 0, so that the corresponding CLB can
be classified as chaotic (Hastings et al., 1993). It is
noteworthy that this phenomenon does not mean that
any kind of CLB should be characteristic of the
system with fixed r corresponding to either mm or
MM. However, one may assume that the existence of
a range of such r values is ‘exploited’ by the system
with polymorphic recombination to produce more
complex limiting patterns.

(1)) Modifiers with an uneven distribution of effects
along the chromosome

We consider two situations: (a) modification of linkage
between blocks of linked loci, with no effect on
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Fig. 4. Transformation of a simple supercyclical dynamics into a complex attractor when a fixed recombination rate (r
= const) is replaced by a polymorphic modifier. The selected system consists of three equal semi-dominant loci (d, = 1),
h, = h, =028, h, = 0-4; the optima were m, = 3-0 and m, =0 (n, = n, = 1), s = 0-95. (a) The phase diagram of a
supercycle found in the range of recombination rates r &~ 0-0001-0-006 (the example assumes r = 0-003). (b) The phase

diagram of the system with a polymorphic modifier (r,,,, = 0-1, r,,,, = 7,,, = 0, . = 0-01).
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Fig. 5. Complex dynamics with an uneven distribution of the modifier effects along the chromosome. (@)—(c) Modifier
affects recombination between blocks but not within the blocks. The selected system consists of two blocks of linked
purely additive loci (h, = 0), {d, = 0-2 and d, = 0-2}, {d, = 0-5and d, = 1}, s =025, r, = 0-1, m; = 165, m, = 0-2 (n, = n,
= 1). (a) Fixed recombination rate between the blocks r = 0-0001 (we found cyclical behaviour of the system at

0<r<0.42). (b) and (c) ry;,, =05, r

Mm — "mm

Fom = 01;r, =001. (d)-(f) Modifier affects recombination within the

blocks but not between the blocks. The selected system consists of two blocks of linked loci {d, = 18, h; = 0-3; d, = 1-0,
h, =—0-7} and {d, = 1-0, h, = —0:69; d, = 18, h, = 0-32}, recombination between the blocks r, = 0-3, m, = 6-055,
my, =01 (n, =n,=1), s =2-01. (d) Fixed recombination rate within the blocks r = 0-001. (e) and (f) r,,,, = 0:02, r,,,, =

r mm

recombination within blocks; and (b) modification of
linkage within blocks of tightly linked loci, with no
effect on recombination between blocks.

(a) Modification of linkage between blocks of linked
loci, with no effect on recombination within blocks

In the example presented in Fig. Sa—c the selected
system consists of purely additive loci with unequal
effects and the modifier is linked to the locus with the

=0; r, = 0-01 is the distance between the modifier and the fourth selected locus.

strongest effect on the selected trait. The resulting
CLB (Fig. 5b, ¢) was classified as a chaotic attractor,
because the Lyapunov exponent is definitely positive
here (L ~0-01) and initially close starting points
produce divergent trajectories. We have also con-
sidered the same selected system with the modifier
linked to the selected locus with smallest effect.
Clearly, these situations are not equivalent: the rate of
change of the strongest locus is higher than that of
weaker loci, which may seriously affect the system
dynamics because of ‘inertia-like’ effects caused by
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linkage between the modifier and the selected loci
(Kirzhner et al., 1995b; see also Section 4). Indeed,
the resulting attractor manifested much simpler
dynamics (a super-supercycle with L = 0; not shown).

(b) Modification of linkage within blocks of tightly
linked loci, with no effect on recombination between
blocks

This situation of recombination modification is
complementary to that considered in the previous
section, where the modifier controlled the recom-
bination rates between blocks but had no effect on
within-block recombination. The difference between
configurations when the modifier is closer to the locus
with the strongest or, conversely, the smallest effect,
was stressed there. The structures of the systems
considered in the current section allow for a further
complication of the ‘ genetic inertia’ effects. Our initial
motivation was in fact to consider such structures.
Indeed, the fate of a genetic modifier, including a
modifier of recombination, may strongly depend on
its linkage to the selected loci (see Section 4). The
proposed structures provide an interesting oppor-
tunity to analyse the behaviour of the modifier and the
whole system when two contrasting versions of
modifier linkage to the selected blocks exist sim-
ultaneously in the system, i.e. linked and freely
recombining. Note that from the viewpoint of re-
combination evolution modelling, this type of system
is much more realistic than multilocus systems with
one linkage group: it is natural to assume that loci
affecting fitness-related quantitative traits are spread
over more than one locality of a multichromosomal
genome (Lewontin, 1974; Korol et al., 1994). It also
fits the concept and corresponding evidence for fine’
control of recombination (Simchen & Stamberg, 1969 ;
Chinnici, 1971). In the example presented (Fig. 5d-f),
with two unlinked blocks, only damped superoscil-
lations were observed for the phase variables with
fixed recombination (at r =0:014). In the system
polymorphic for the rec-modifier, the complex dy-
namics become stable (Fig. Se, f).

4. Discussion
(1) The phenomenon

We have shown earlier that simple cyclical selection
for a trait controlled by multiple additive, dominant
or semi-dominant loci can result in extremely complex
limiting behaviour (CLB) of diploid population
trajectories (Kirzhner et al., 1996, 1998a, b). The
recombination rate proved to be a key factor affecting
the mode of CLB and the existence of CLB. Therefore,
we have considered here a generalized and more
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natural model: the fixed recombination rate was
replaced by a polymorphic recombination modifier.
The effect of such a replacement on CLB has already
been analysed for a more specialized two-locus system
(Kirzhner et al., 1995b).

Several types of rec-modifiers were considered in
this paper: (1) modification of recombination rates in
all intervals of a chromosome; (2) modifiers with an
uneven distribution of effects, including modification
of linkage between blocks of linked loci, with no
within-block effect, and modification of linkage within
blocks of tightly linked loci, with no between-block
effect. The modifier-dependent changes included: (a)
supercyclical dynamics due to the rec-modifier in a
system that does not manifest CLB when recom-
bination rate is a fixed parameter; (b) the appearance
of a new level of superoscillations (super-supercycles)
in a system that manifests supercycles under fixed
modifier; (c) chaotization of the regular supercyclical
dynamics. While the attractors of the first two types
seem to be rather complex, trajectories starting from
neighbouring initial points do not diverge. Moreover,
the domain of attraction of these movements appeared
to be quite large, sometimes manifesting a nearly
global stability. To a large extent this phenomenon is
due to polymorphism at the modifier locus. Namely,
with fixed r at the level corresponding to CLB for the
selected system itself, if CLB exists at all in such a
case, the CLB-attracting domain in corresponding
phase space may be smaller. This effect was also
observed in our former study of CLB with poly-
morphic rec-modifier for a more specialized regime of
cyclical selection (Kirzhner et al., 1995b). It is
noteworthy that the modifier locus is an active
participant in the observed complex non-monotonic
limiting movements, although its dynamics may have
some specific components that differ from those of the
selected loci (e.g. Figs 2, 3).

An important aspect characterizing the described
pattern is its robustness with respect to changes in the
parameters. In general, this question could be
addressed in relation to the dynamics of the selected
system with either fixed or polymorphic recombi-
nation. We have recently shown (Kirzhner et al.,
1998 b) that, with a fixed recombination rate, CLB
may be quite a robust phenomenon, resistant to
variation in parameters characterizing: (i) the effect of
the selected loci (d, and h,); (ii) the rate of re-
combination; (iii) the intensity of selection; (iv) the
optima for the trait; (v) random disturbances in the
period length and optima; and (vi) random
fluctuations of haplotype frequencies due to drift
(caused by finite population size). These results are
also true for CLB patterns manifested by population
models with polymorphic recombination modifiers. In
particular, all the examples provided in Figs. 1-5
manifest CLB not only with the parameter values
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provided in the legends, but also over some range of
these parameters. For instance, the system of three
purely additive selected loci of non-equal effects in
Fig. 1 ¢, where the modifier locus is the source of CLB,
manifests the observed pattern not only for the values
of d,—d, presented, but also for a range of in-
dependently varying values of d, (i=1,2,3) (up to
about 10% for d, and d, and 2-3% for d,; not
shown). Another example is a system of three
equidistant selected loci of equal effects d, = d, = d;
=1, period p = n, +n, = 1+1 with optima m, = 3-2
and m, = 0-2 and s = 1-1. At fixed recombination rate
(in the range 0-0-01) this system manifests either
supercyclical auto-oscillations or convergence to a
fixed point for any /, (i =1,2,3) from the interval
[0-06-0-12]. With a polymorphic modifier (r,,,, =
0-01, 7y, = Fopm = 05 r. = 0:001), we observed more
complex, chaotic-like dynamics for any combination
of h, values taken independently from the foregoing
range [0-06-0-12].

The phenomenon of super-supercycles appeared to
be qualitatively resistant to moderate random dis-
turbances of the environmental period. In the model
presented in Fig. 2, the period structure of the initial
process was n; =n, = 1. In the disturbed process,
with a probability of 7 along the trajectory, n, or n,
become independently equal to 2. One can easily see
(compare Fig. 2 ¢ and 2d) that the supercyclical mode
of the dynamics is preserved at least for 7 = 0-1.

(i1) Proposed mechanism

How can the innate ability to generate supercycles
affect the fate of modifiers in the population? To
explain the observed phenomenon of a further
complication of CLB with the introduction of a
polymorphic rec-modifier (birth of a super-supercycle
in a system already manifesting super-auto-oscil-
lation), we proposed earlier a new notion of ‘genetic
hysteresis’ (Kirzhner et al., 1995b). This reflects the
fact that, under super-supercyclical movement, the
characteristics of the system dynamics depend not
only on the position of the system’s coordinates in the
phase space, but also on the direction of this movement
(e.g. whether the frequency of an allele for higher
recombination rate is increasing or decreasing over
the specific part of the trajectory). Linkage of the
modifier locus to the selected system, a kind of an
‘inertia factor’, proved to be the key component
determining the main characteristics or even the very
possibility of such a pattern.

For different types of genetic modifiers, it is known
that the mode of modifier dynamics and the evol-
utionary stable level of the modified parameter (e.g.
the rate of recombination or mutation) can critically
depend on its linkage to the selected system (reviewed
in Korol et al., 1994; Feldman et al., 1997). As regards
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a rec-modifier, the general conclusion is that close
linkage promotes a more rapid spread of the allele
enhancing recombination. In a model with a varying
environment, Charlesworth (1976) observed an
increased rate of the recombination-enhancing allele
when the modifier was linked to the selected loci. He
has also established that, for long periods of en-
vironmental fluctuation, situations are possible when
the intensity of linkage of the modifier with the
selected loci affects not only the rate but also the
direction of its dynamics. If the modifier is unlinked to
the selected loci then the recombination-enhancing rec
allele is eliminated from the population, and if it is
linked then it becomes established. The same effect
was observed in a selection—-mutation balance model
(Feldman et al., 1980). An increase in the equilibrium
recombination value with a closer linkage of the rec
locus with the selected system has also been reported
for a haploid model with a varying environment
(Sasaki & Iwasa, 1987). It is generally assumed,
probably under the influence of the above results, that
linkage enhances the intensity of selection for
increased recombination (Brooks, 1988). However,
our previous results showed that an opposite trend
may be characteristic of cyclical selection with short
period (Korol et al., 1990, 1994). In such a situation
selection for increased r is most effective when the rec
locus is unlinked or loosely linked to the selected
system. Tighter linkage can alter the direction of
change, resulting in the fixation of the allele reducing
recombination. With a longer oscillation period, i.e.
with a more stable environment, intermediate linkage
is optimal in terms of selection for increased r. Finally,
in a still more stable environment with long periods of
constant conditions, selection for recombination is
most effective under tight linkage (see Korol et al.,
1994, pp. 208-12). Table 1 illustrates this effect for a
situation when the selected trait depends on three
tightly linked loci. Similar results were obtained also
for multilocus selection in host—parasite systems
(Preygel & Korol, 1990; Korol et al., 1994, p. 250; but
for mutation modification in such systems see
Haraguchi & Sasaki, 1996). One could easily see the
opposite effects of the intensity of linkage between the
modifier and the selected loci on the modifier dynamics
for long- and short-period selection regimes.

The consideration of modifier linkage to the selected
loci allows us to suggest a simple heuristic explanation
of the effects of the modifier on CLB. For that, we
should recall first the ‘low-pass filter effect” described
for evolution of modifiers of recombination rate
(Sasaki & Iwasa, 1987) and mutation modifiers (Ishii
et al., 1989). It was found that in a system subjected to
fluctuating selection with a mixture of oscillations
with different period lengths, the fate of the modifier
is determined mainly by the lowest frequency com-
ponent. In our models, we have two components of
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Table 1. Dynamics of a recombination modifier in a cyclically varying environment as a function of linkage

between the modifier and the selected system

M is recessive
Period length

M is additive

p=n+n,+n,+n, r, P~ 0050 0-950 0-050 0-950
System 1
4=1+1+1+1 0-01 0-023 0-057 0-000 (440) 0-001
0-05 0-030 0-101 0-000 (717) 0-046
0-1 0-034 0-228 0-001 0-383
02 0-043 0-680 0-012 0-849
0-5 0-056 0-990 0-134 0-977
System 2
40=19+1+19+1 0-01 0-035 0-143 0-004 0-143
0-05 0-055 0-903 0-121 0-942
0-1 0-061 0-988 0-217 0-976
0-2 0-053 0-963 0-077 0-956
0-5 0-046 0-854 0-021 0911
80=39+1+4+39+1 0-01 0-999 1-000 (721) 1-000 (645) 1-000 (721)
0-05 1-000 (382) 1-000 (118) 1-000 (461) 1-000 (118)
0-1 1-000 (715) 1-000 (173) 1-000 (871) 1-000 (173)
0-2 0-152 0-999 1-000 (723) 0-999
0-5 0-040 0-412 0-004 0-412

The selected system (three equidistant loci) was allowed to reach equilibrium with fixed recombination at P, =0 or P, =
0 (with haplotype frequencies in consecutive periods differing by less than 107 for any moment along the period). Then, the
alternative modifier allele was injected at a small frequency (0-05) and with no linkage disequilibria relative to selected loci.
The frequency of the M allele after 1000 periods (or the number of periods needed to achieve fixation at the modifier locus,
indicated in parentheses) was used to assess how the level of recombination r, between the modifier and selected system affects
dynamics. System 1:d, =d, =1, d, =2, h, =h,=0,h, =08, m; =9, my=m,=1andm, =0,5s=3;system2:d, =d, =
dy=1,h =hy=hy;=06;m =32, m,=m,=27and m; =2-0, s = 1-5; in both systems, r,,,, = 0-01 and r,,,, = 0.

the selected system dynamics: (i) forced oscillations
with a short period caused by strong-to-moderate
cyclical selection; and (ii) low-frequency movements
(e.g. supercycles consisting of hundreds or even
thousands of environmental periods). Under close
linkage of the modifier to the selected system, the first
component promotes selection towards lower re-
combination whereas the second component induces
selection for higher recombination alleles (Korol et
al., 1990, 1994). In contrast, under moderate or loose
linkage the first component may result in increased
recombination while the outcome of low-frequency
oscillations  will be reduced recombination
(Charlesworth, 1976). Thus, the effects of oscillations
of very low and very high frequencies on the modifier
are opposite. According to the principle of Sasaki &
Iwasa (1987), in such conditions the fate of the
recombination modifier should depend mainly on the
second (low-frequency) component. However, along
the trajectory, the modifier itself is evolving, which
may result in a reduction of the ‘current’ amplitude of
the low-frequency movement. On such intervals of
system trajectory, the high-frequency component
determines the dynamics of the modifier, preparing
the conditions for the next phase. Such a dynamic
balance may generate different modes of limiting
behaviour considered in the foregoing examples.

mm

To demonstrate that this mechanism is relevant to
our system with recombination evolution directed
simultaneously by short-period forced oscillations
and long-period auto-oscillations, the following
artificial construction was considered. The observed
auto-oscillatory long-periodical movement was
replaced by ‘external’ long-periodical changes in the
selected optimum, so that the cyclical selection regime
is composed of high- and low-frequency oscillations
(Fig. 6). The short period was determined by
alternation of the optima m, and m, (n, =n, =1, i.e.
short period length was p =2). Slow oscillations
(p = 40) were simulated by changing the optima
according to my, = 3-0{1 +sin[27¢/40]/3} and m, =
0-3{1 +sin[27¢/40]/3}, where ¢ denotes ‘time’ along
the trajectory measured as the number of short
periods passed. In this example, the modifier is closely
linked to the selected system (r.= 0-05), hence the
allele of higher recombination goes to extinction if the
system is subjected only to short period (p =2)
selection (not shown). The same result was obtained
when the short period was complemented by long-
term oscillations (each including 20 short periods).
The direction of the modifier dynamics is opposite if
the long-term period includes 40 short periods. At r =
r,.. =0 the selected systems subjected to the two-

mm

component forced oscillations converges to the at-
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Fig. 6. The effect of a composition of high- and low-frequency forced oscillations on the fate of a recombination
modifier closely linked to the selected system. The selected system consists of three equal semi-dominant loci (d, = 1), h,
=h,=036, h,=04,5s=16;r,, =001,r,, =r,. =0 r =005 As before, the changes in allele frequencies are

shown over the short environmental periods.

tractor Q (Fig. 64); Q, can be considered an analogue
of the supercycle. If allele M is injected at a low
frequency (0-05) when the system has reached Q,
(after 2000 short periods), then the system will evolve
towards a new attractor Q, (Fig. 6a) and M goes to
fixation (Fig. 6b; the moment of injection is denoted
here by 0).

How could these ‘elementary’ processes produce a
super-supercycle? For another type of selected system
(two-locus cyclical selection defined by alternating of
two fitness matrices), we found that such a regime can
arise in the vicinity of a fixed polymorphic point if its
stability depends on recombination rate (Kirzhner et
al., 1995b). We believe that this is generally the major
factor in the modifier effect on CLB. In principle, if
the spectral radius of the linear approximation of the
evolutionary operator at this point is close to unity
and the maximum eigenvalue is complex, then a
cyclical regime is possible (see Kirzhner et al., 1998 b).
Moreover, if the spectral radius varies with the rate of
recombination, then the resulting auto-oscillations
may undergo a long-term evolution along the tra-
jectory together with and due to the polymorphic
recombination modifier. That was precisely the scen-
ario in the model presented in Kirzhner et al. (19955).
On this basis we can interpret the super-supercyclical
behaviour of the model presented in Fig. 4a—c. For a
series of fixed recombination rates (r) the following
eigenvalues with maximum module were found:

(1) r=0002, A=10173+01333i, |A| =1-026
>1;

(2) r=0007, A=10092+01299i, |A|=1-017
>1;

3) r=001, A=09908+0-1158i, |A| = 09975
< 1.

Therefore, at r=0-01 slow damping oscillations
should arise. At two other values of r stable supercycles
are possible and we indeed observed these CLBs. Note

that, in accordance with the spectral radius |A|, the
amplitude of the supercycle 1 is larger than that of
supercycle 2. Let the modifier be polymorphic and
closely linked to the selected system (r, = 0-01 in our
example). If the initial mean value of r is large enough,
then small damping auto-oscillations will arise,
promoting evolution towards lower recombination
(due to the effect of short forced oscillations and close
linkage of the modifier to the selected system, as in the
system of Table 1). According to the foregoing spectral
properties, the amplitude of the low-frequency auto-
oscillations will tend to increase together with the
frequency of the allele for low recombination. When
this amplitude becomes large enough, it could counter
the effect of short forced oscillations and reverse the
direction of change of the modifier frequency (like the
effects presented in Fig. 6 and Table 1). The reverse
dynamics at the modifier (towards increased recom-
bination) will reduce the spectral radius of the fixed
point, resulting in a trend of decreasing amplitude of
the supercycle, and then the whole process is repeated.

(1) Implications for the evolution of recombination

The two-level auto-oscillations obtained here, caused
by (a) reaction of the multilocus system to cyclical
selection, and (b) the modifier dynamics, allow us to
make some suggestions about the possible role of
recombination and sex in complex population dy-
namics. The majority of results on complex dynamics
in population biology come from ecology (for review
see Hastings et al., 1993). The main source of complex
dynamics patterns in population genetics is frequency-
dependent selection in single (Charlesworth, 1971;
Roughgarden, 1971 ; Loeschcke & Christiansen, 1984 ;
Altenberg, 1991) and (mainly) two- or multiple-
species interactions (May & Anderson, 1983; Bell &
Maynard Smith, 1987; Preygel & Korol, 1990;
Hamilton, 1993; Korol et al., 1994; Kirzhner et al.,
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unpublished data). One of the generalizations derived
recently from a study of single-locus ecological-genetic
models with restricted mixing was that sex reduces the
likelihood of complex dynamics and chaos (Ruxton,
1995, and references therein). This conclusion partially
corresponds to our results presented here and in
previous papers on cyclical selection (Kirzhner et al.,
1996, 19984, b). Sexual reproduction includes two
major components: syngamy and meiotic recom-
bination. Our results concern the effect of the second
component. The question then is whether more
recombination indeed means less complexity. We
found that, in general, the appearance of CLB is
associated with smaller rates of recombination. How-
ever, this dependence is not necessarily a monotonic
one; at r =0 CLB is a rare phenomenon (see, for
example, the bifurcation diagram in fig. 4 in Kirzhner
et al., 1996). Likewise, in some of the examples
presented here, the presence of a high recombination
allele (e.g. r,,,, = 0-5) was an obligatory condition for
a robust manifestation of CLB.

The last question that we would like to discuss is the
possible role of the CLB phenomenon in recom-
bination evolution. The described CLB patterns
resulted from high-frequency forced oscillations of the
optimum value of the fitness-related trait. It is known
that in such conditions only very strong selection can
provide evolution towards increased recombination
(Korol & Preygel, 1989; Korol et al., 1990, 1994
Charlesworth, 1993; Kondrashov & Yampolsky,
1996). The high genetic load needed to promote
increased recombination is one of the major difficulties
when temporal (cyclical or stoachastic) environmental
fluctuations are to be considered as a causal factor
(Otto & Michalakis, 1998). Another obstacle is the
presumed inability of fluctuating selection to preserve
polymorphism, a precondition of recombination
evolution (Kondrashov, 1993). We found earlier that
this is not really a serious obstacle: stabilizing selection
with a cyclically varying optimum for a quantitative
trait that depends on purely additive or semi-dominant
genes with non-equal effects leads to local poly-
morphism stability, with a sufficiently large poly-
morphism attracting domain (Korol et al., 1994,
1996). Analysis of this model shows that the demands
for a selection strength sufficient to promote evolution
towards increased recombination can be significantly
relaxed if the effect of linkage of rec-modifier with
trait loci is taken into account (Korol et al.,
unpublished data). For example, the selection regimes
for system #2 in Table 1 correspond to geometric
mean fitnesses W = 0-78-0-82 (although other ex-
amples, with W = 0-85-0-90, can easily be produced).

The interaction described between short-period
forced oscillations and long-period auto-oscillations
allows us to propose the following mechanism. The
main explanation of the putative role of sex and
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recombination in a frequently varying stressful en-
vironment involves the changing sign of preferred
linkage disequilibria (Charlesworth, 1976; Maynard
Smith, 1978; Sasaki & Iwasa, 1987; Barton, 1995).
For the model of abiotic selection in question, this
type of environmental change is very challenging
because strong selection is needed to promote re-
combination. Directed changes or slow periodical
variations in the selected optimum are more efficient
(Charlesworth, 1993; Barton, 1995). Then increased
recombination can become advantageous by facili-
tating the changes in allele frequencies at selected loci.
This mechanism may virtually take place in our CLB
dynamics. Indeed, as we can see from the phase
diagrams (Figs. 1-5), the supercyclical dynamics was
manifested as slow changes of allele frequencies at the
selected loci along the trajectory (comprising tens or
hundreds of generations). Actually, this means that
the mean value of the selected trait can undergo
corresponding slow changes. Indeed, in the model of
Fig. 2, the mean value of the trait at the environmental
state 1 (where the selected optimum was 3-30) varies
along the supercycle within the range 1-86-1-98, and
at state 2 (selected optimum 0-3) within the range
1-25-1-52, whereas the mean value averaged over the
environmental period varied from 1-56 to 1:74. In the
model of Fig. 3 we have, correspondingly: 0-28-0-39
for state 1 (selected optimum 0), 0-72-0-82 for state 2
(selected optimum 1-1), and an average over the
period of 0-51-0-59. This low-frequency dynamics
may favour non-zero (or high) recombination pro-
vided there is a close enough linkage of the modifier to
trait loci (or to some of them). For example, if the
parameter /i, = 0-4 is replaced either by h, = 0-3 or A,
= 0-5, then stable polymorphism instead of a super-
cycle will be obtained and the modifier evolves towards
zero recombination. The same result will be obtained
if d; =1 is replaced by either d; =11 or d; = 09.
Therefore, the ability to manifest supercyclical dy-
namics prevents fixation of the zero recombination
allele at the modifier locus. The foregoing effect of
low-frequency movements on recombination induced
by high-frequency forced oscillations may be im-
portant even if it is manifested in an imperfect form,
e.g. as damping super-oscillations that can interact
with stochastic disturbances of the initial (environ-
mental) period length and selected for optima, finite
population size and random mutations. These pro-
cesses may result in a fixation of a high recombination
allele, though the proposed scenario needs further
detailed analysis.
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