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Supercycles, strange attractors and chaos
in a standard model of population genetics
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Abstract

We carried out a detailed investigation of the standard multilocus genetic system. We evaluated
the characteristics of the dynamics of several types of such a system allowing to classify the
complex trajectories: the Lyapunov exponent, the information entropy, the information dimension
and the capacity. It is shown that such dynamic systems manifest auto-oscillations, strange
attractors, and chaos. (© 1998 Elscvier Science B.V. All rights reserved.
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1. Introduction

The biological applications of complex system dynamics concern ecology, morpho-
genesis and evolutionary theory [1]. Evolution may be viewed as the formation of new
macroscopic patterns [1]. The study of the pattern and amount of genetic variability
under different combinations of evolutionary forces is a major theme of theoretical
population genetics [2]. Complex dynamical behavior of purely ecological models and
ecological-genetical models are well known (see, e.g., Ref. [3] and references therein).
Complex dynamics has been found in purely genetic two-locus models with constant
parameters for a continuous time case [4]. To our knowledge, only one example of a
discrete time model with constant coefficients has been studied so far [5]. Recently,
we have shown that complex dynamics is a typical phenomenon for multi-locus ge-
netic systems with a cyclical variation of parameters [ 6—-8]. [t is interesting to interpret
these results using the methods developed for the analysis of complex physical systems
[9-12]. In this paper a four-locus diallelic system subjected to a cyclically varying
environment is investigated. [t is shown that for a certain range of parameters the
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system manifests autooscillations, period-doubling, chaotic behaviour, strange attractors
and frequency locking. The entropy, the dimension [11] and the Lyapunov exponent
[13] of the system are evaluated.

2. The model and basic equations

We investigate the behaviour of a dynamic system which represents an infinite popu-
lation with panmixia and non-overlapping generations. Assume that four linked diallelic
loci 4;/ai(i=1,...,4) affect the selected trait » in such a way that w = u(g) = Zf L wilg).
The effect of the ith locus of the genotype ¢ is specified as w;(¢) == d; for 4,4,, d;(14+h;)
for A;a;, and 0 for @;a;, where d; > 0 is the additive effect of the ith locus. and #4; is its
dominance eftect. For cyclical selection, the fitness w;(u) of a genotype with trait value
1 at the environmental state 7 is defined by the fitness function w(u(g)) = F(u(g) - z,)
where z; is the trait optimum selected for at the environmental state 7. For example,
one can use the fitness function F(u(g) — z,) = exp{—[u(y) — zFs~>}. The evolution
of the genetic system is described by the multi-dimensional map [2]
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where the gamete frequencies x/ and x in adjacent generations are the phase vari-
s—lé

ables which obey the following condition: > " x; = 1, x;>0 where P;; , >0 is the
probability of producing gamete 1 by a genotype g,; that resulted from union of ga-
metes / and j in the previous generation. P, depends on the distribution of the
selected loci among chromosomes and on the rate of recombination r between the ad-
jacent loci within the chromosome. Clearly, ZP,-_,‘ m = L. The mean fitness W has the
form 2]: W =3 Z,._‘/. w,(u(yi; )P mxix;. Different types of cyclical selection regimes
can be defined by a finite ordered set {z)|n;.z2|n.....z4|n,} where z, is the selected
optimum at the th environmental state, and », is the longitude of the rth state, so that
the period length p has the form p = ny+n 4 - - +n,. Two extreme types of the map.,
Eq. (1), resulting in complex limiting behaviour (CLB) have been considered in theo-
retical population genetics. The first type is characterized by constant fitness coefficients
w(yij). The second type includes models with fitness coefficients w(g;;) which depend
on phase variables. The model considered in this paper comprises a third, intermediate,
type with fitness coeflicients that do not depend on the phase variables. In physical
systems such kind of dependence can result in a dynamic phenomenon referred to as
parametric oscillations [14]. We characterize the limiting behaviour of the trajectories
for a complex attractor using the maximal Lyapunov exponents /... the information
entropy /. the capacity d¢ and information dimension d; [11,13,15]:
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Here the distance between the lattice points k and h has the form [13]:
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The vectors X{(k) correspond to a given b; the points k and h are chosen in such a
way that the distance defined by Eq. (4) is less than the maximum initial separation
which belongs to the interval (0, 1), and the total number of pairs (k,h) is N,[13]. P;
is the probability contained within the ith cube of side ¢, N(¢) is the minimal number
of p-dimensional cubes of side ¢ needed to cover an attractor.

3. Results and discussion

The numerical analysis of the map, Eq. (1), proves the existence of essentially com-
plex phenomena in population genetics due to cyclical selection. The selection model
considered demonstrates supercycles, strange attractors and chaotic-like behaviour. The
system simultaneously participates in two types of motion. The first type of motion is
caused directly by the cyclical selection, and it is characterized by a short period which
is equal to that of the environmental period p. The motion of the second type can be
cither periodic or more complex. The periodic motion has the period length which is
usually much larger than p. The second type of motion is to some extent analogous to
the anharmonism [14] in physical systems. We are interested in the driven motion of
the second type. The trajectory is observed only at this state taken at intervals of the
length p. Such a choice means that we actually study the dynamic system governed by
the map, Eq. (1), which is iterated p times during the selection cycle. We call a cycle
belonging to such a trajectory as a supercycle, since each point of it corresponds to a
full selection cycle. The main types of the system complex behaviour are presented in
the following pictures.

Fig. la demonstrates a projection of a supercycle on a plane. Its comparatively
complex structure is due to the high dimensionality of the phase space. Its spectrum
presented in Fig. 1b corresponds to a cyclical motion and consists of two broadened
lines. The estimation of the Lyapunov exponent according to Eq. (2) yields the value
of Zyux — 0. The capacity and the information dimension, Eq. (3). are calculated for
the two-dimensional projection (see Fig. la) since the calculating of these quantities in
general casc of 15 dimensions is hardly possible [16]. Choosing ¢ = 1,200 we find that
dec =1.22 and d, = 1.08. The value of Z,,« shows that the motion in our case is cyclical,
indeed; the value of d| is close to the expected unit, while the value of d is larger than
the expected one. However, the capacity and the information dimension decrease with
a decrease of & For ¢ = 1/1000 they reach the following values: d¢ = 1.18 and o, =
1.03. Consider the examples of more complex behaviour presented in Figs. 2 and 3.
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Fig. 1. The supercycle caused by a cyclical selection for a trait controlled by four additive loci. (a) Projection
of the trajectory on the phase plane (P3,Py). (b) The spectral density (in arbitrary units) of the time series
corresponding to the changes of P;3.
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Fig. 2. Complex trajectories caused by cyclical selection for a trait controlled by four additive loci. (a)
Projection of the non-cyclical complex trajectory on a phase plane demonstrating the resemblance between the
attractor and the Lorenz attractor. (b) The spectral density (in arbitrary units) of the time series corresponding
to the changes of P3. (c) A fragment of the complex attractor trajectory for 20000 environmental periods
(from 30001 to S0000). (d) The spectral density (in arbitrary units) of the time serics corresponding to the
changes of P;.

The special projection of the attractor shown in Fig. 2a allows to specify its Lorentz
attractor-like structure. The Lyapunov exponent is positive, A, =~ 0.002, and shows
some variation along the trajectory in fourth decimal position. Consequently, the at-
tractor is chaotic [I1]. For &« = 1/200 and 1/1000 we find, respectively, that d =
1.65,1.51 and o, = 1.60, 1.50. The attractor’s spectrum presented in Fig. 2b shows the
frequency-locking effect which is similar to that in laser systems [12,17].
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Fig. 3. Complex attractor caused by cyclical selection for a trait controlled by four dominant loci. (a) A
fragment of the trajectory for 20000 environmental periods (from 30001 to 50000). (b) Bifurcation diagram
with » taken as a bifurcation parameter.

The attractors shown in Fig. 2c and Fig. 3a demonstrate no explicit Lorentz features.
They are chaotic since their Lyapunov exponents Zma, &~ 0.04 and 0.03, respectively.
The capacity and information dimension of these attractors have for £¢=1/200 and
1/1000 the following values, respectively: for that in Fig. 2¢ d¢ =1.57,1.88 and d) =
1.28,1.28; for that in Fig. 3a d¢c = 1.40,1.38 and d; = 1.21,1.26.

Consider the bifurcation diagram (Fig. 3b) preceding the attractor shown in Fig. 3a.
This bifurcation cannot be identified as a Feigenbaum one since the ratio of two con-
sequent bifurcation intervals considerably differs from the Feigenbaum constant [14].
It is rather similar to the Hopf one since three consequent steps of a period-doubling
are identified [14].

4. Conclusions

We investigated numerically the dynamic system generated by the multi-dimensional
map, Eq. (1). It demonstrates CLB like supercycles and more complex attractors in-
cluding chaotic ones. The studied genetic system manifests the general features of
complex nonlinear systems known in fluid dynamics, optics and theoretical ecology
[1,2.12,17,18].
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