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Abstract 

To classify different types of cyclic selection, a measure of fitness disequilibrium 
was used, and a class of systems were considered where this measure has the same 
sign in all states (sign-concordant environments). The necessary conditions for 
existence of a fixed point (considering any moment within the period as a referring 
one) are obtained for sign-concordant systems. However, analytical study of such 
systems, in the case of selection for equal additive genes, and numerical testing of 
more general situations, allowed us to conclude that no polymorphism is possible. 
In the alternative class of sign-nonconcordant systems, polymorphism is possible. 
However, we found that global stability is an exception rather than a rule for 
sign-nonconcordant systems. Massive numerical simulations of selection in a four- 
state environment were made for cycle lengths in the range 8-28 and with evenly 
distributed selection coefficients. The proportion of polymorphic regimes ranged up 
to about lS%, and was dependent on the recombination rate between the loci. It 
should be stressed, that polymorphism maintenance in the haploid systems, when it 
is possible, can not be considered as an effect derived from constant selection, or be 
a result of any hidden form of heterozygous advantage. In other words, polymor- 
phism stability is causally connected with environmental fluctuations. Equally 
important is that this effect of fluctuations is only possible because of recombina- 
tion: in single locus systems haploid cyclical selection is unable to produce protected 
polymorphism. 

* Author to whom correspondence should be addressed. 
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Introduction 

Kirzhner et al. 

Among different explanations for high levels of genetic variability in nature, 
spatial and temporal variations of selection intensity were considered as very 
plausible for a long time. The first theoretical models have confirmed this expecta- 
tion but strongly delimited the conditions of their applicability (Levene, 1953; 
Haldane and Jayakar, 1963; and others. For reviews see also Felsenstein, 1976; 
Gillespie and Langley, 1976; Hendrick et al., 1976; Hendrick, 1986). The range of 
parameters compatible with stable polymorphism proved to be much narrower in 
the case of temporal fluctuations as compared to spatial ones. The conditions for 
protected polymorphism may be relaxed under combined action of these two 
factors (Hendrick, 1978; Ewing, 1979). 

Most of the results related to selection variation in time are for the one locus case 
(e.g., Karlin and Levikson, 1974). However, it is reasonable to assume that new 
conclusions may be obtained when considering two or more loci. For such a 
formulation the haploid case is of special interest. Indeed, with haploid selection 
there is no way to obtain a stable polymorphism due to any (hidden) form of 
heterozygote advantage, no matter how this advantage is defined. Here we will 
show that with haploid selection in a constant environment, and in a rather broad 
range of fluctuating environments stable polymorphism can not be maintained. 
However, a class of situations can be described where fluctuating selection can 
maintain stable polymorphism. 

Necessary conditions for polymorphism. General selection regime 

The dynamics of infinite haploid panmictic populations will be considered with 
selection acting on two diallelic autosomal loci. Generations are non-overlapping. 
The evolutionary operator can be written in the following form: 

xi = Il(x, - rD)/W, xi = &(x2+ rD)/W, 

x;=13(x3+rD)/W, x:=&(x4--rD)/W, 
(1) 

which transforms the standard simplex Z for the 4-dimensional space into itself. 
Here x,, x2, x3, and x, are the frequencies of haplotypes AB, Ab, aB, and ab, 
respectively, 

W = 1,x, + &x2 + 1,x, + &x4 + rDa, 

D =x,x4-x2x3, 0 = - 1, + I, + 1, - 14. 

Fitnesses I,, 12, 13, l4 are dependent on the environment. We will consider changing 
environments with p different states (p > 1). If the states follow in a periodical 
sequence we can speak of a cyclical environment. For the state with number i we 
denote fitness coefficients as Zj, , Zj2, li3, &,. Due to normalization of ( l), the maximal 
fitness in each environmental state is equal to unity. 
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For a better understanding of the nature of possible polymorphisms in fluctation 
environments, it is reasonable to first check the situation with a constant environ- 
ment. The questions of: (a) existence, and (b) analytical form of stable states, have 
been solved earlier for the case I, = l4 (Feldman, 1971). For the general case, the 
following statement can be proved. 

Proposition I 

For existence of an internal fixed point of the system (l), in constant environ- 
ment, it is necessary and sufficient that one of these two groups of inequalities hold: 

4 3 14 > 12 I 1, ; r > (max(4, 14> - mW2, 13))lmax(4, 14> , 
or (2) 

12 9 1, > 4 14; r > (max(l,, Z,) - min(l,, 14))/max(l,, I,) . 

Only one internal fixed point could exist (if at all) with coordinates (Z1, R1, Z3, Z4): 

where pi = Ii - L, 

L = {c2 - r)(zl l4 - l2l3) + J([c2 - d(hz4 - z2r3>l 

- 4(G - I2 - i3 + ~4)&O)( 1 - rN)l/Wl - I2 - I3 + 14>) , 

For proof see Appendix 1. 
The Jackobian of the transformation (1) at the fixed point can be written in the 

explicit form. However, its analytical treatment is cumbersome. Numerical exami- 
nation showed that the characteristic polynomial of this Jacobian has, almost 
always, a positive root which exceeds unity. The only exceptions are cases where the 
parameters of the system obey some special conditions (equalities) and then the 
spectral radius is equal to unity. Thus, in these cases polymorphism will be, as a 
rule, unstable. 

Generally, stable polymorphism is not an intrinsic characteristic of systems with 
haploid selection. Therefore, polymorphism stability, if possible at all, should be a 
phenomenon of some kind of variable selection (e.g., temporal fluctuations of 
fitness coefficients, frequency dependent selection, etc.). On the other hand, global 
stability of a set of polymorphic points (with the whole interior of the simplex being 
the domain of attraction) is also an exception for environments with a finite number 
of states. Under these conditions, as a rule, there exists a non-empty domain of 
attraction of fixation points for each of the participant loci. The direction of 
fixation depends on the integral fitnesses of haplotypes (as defined below) in all of 
the environmental states. 
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Let us define the integral fitness of the haplotype j, in a periodic environment 
with p states, as Lj = lljlzj 3 . . lPj, where p is the period length, and j = 1,2, 3,4. If 
the sequence of the states is not fixed within the period, the environment can be 
called quasi-periodic. 

Proposition 2 

The equality max(L,, L4) = max(L,, L3) is a necessary condition for global 
stability of polymorphisms in periodic and quasi-periodic environments. If 
max(L,, L4) = max(L,, L,), then the vertex x, = 1 of the simplex will be a point of 
local attraction, if L, = max(L,, Lz, L,, L4). The second locally attracting vertex 
will be x, = 1, if 

L, = max((L,, L,, L,, L4}\Lm) and (1 - r)PL, < L, , (4) 

where {L,, L,, L,, L4}\L, denotes the set {L,, L2, L,, L4) without the element L,, 
and haplotype s complementary to m. For proof see Appendix 2. 

Therefore, global stability of polymorphisms is practically an exception, and 
possible directions of fixation depend on integral fitnesses Li, and the recombina- 
tion rate r between the selected loci. The condition max(L,, L4) = max(L,, L,) 
corresponds to a small set of systems and is, formally speaking, very special. 
Situations of this type are discussed in the literature (e.g., Sasaki and Iwasa, 1987, 
for the haploid case, the Charlesworth, 1976, for the diploid case) and, therefore, 
deserve further consideration. 

As a simple example where the accomplishment of the necessary condition leads 
to global stability, we will study the model of the haploid two locus population 
considered in Sasaki and Iwasa (1987), where selection alternatively favours either 
AB and ab, or Ab and aB haplotypes. In our analysis the length of the period is 
p =2. 

Proposition 3 

For a system defined by the evolutionary operator (1) in a two-state envi- 
ronment with I,, = 1,4 = 1, 1,2 = 1,3 = C and I,, = lz3 = 1, I,, = lz4 = C, C > 1 and 
p = 2, a polymorphic fixed point exists, and is globally stable. For proof see 
Appendix 3. 

Now we will formulate one important necessary condition for the existence of a 
polymorphic fixed point. A trajectory of the dynamic system (1) will be referred to 
as a regular one, if an environmental state (say, i) exists, such that for a finite time 
the sign of the sequence fijii becomes stabilized. Here, 

s=p- 1 

fiji=~j c (Lf/R”)D(‘+“), j=l,2,3,4; 
s=O 

(5) 

j is the haplotype number; L is the integral fitness; Lj = li,jli+ I,j * * * $+,j; 
ti= wiwi+, **. wi+s; and D’ - ’ = R. Index i + s is calculated modulo p, D’ + ’ is 
linkage disequilibrium at the environmental state i + s, z1 = zq = - 1, r2 = r3 = 1. 
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The coefficient Dii is a linear combination (with constant coefficients) of the 
quantities D/Q over all their values within the cycle, and it depends on genotype 
(j), and on the chosen starting point within the cycle (i). Thus, for each i ( 1, . . . , p) 
we can define four sequences fi,(n) (j = 1, . . . ,4), where n is the period number. 
Stabilization of the sign of fiii(n) means, that some n = n, exists and, that for any 
n > n, sign (aii(n)) = sign(Bii(no)). A trajectory is regular if there exists at least one 
state i, for which stabilization of sign eji is possible for all j (j = 1, . . . ,4). 

Let us consider a case where Lj could be ranked in an increasing sequence 

This ordering induces a corresponding sequence of coefficients fi,: 

(6”) 
For each regular trajectory of the system (1) we can say that the signs of fiii from 
(6) become stabilized within a finite time. Further consideration concerns the 
behavior of the system beginning from the moment of stabilization of the sequence 
of signs. We will refer to the sequence (6”) as an increasing-for-sign if it does not 
contain changes from plus to minus. In other words, the first m elements of (6”) are 
non-positive and the subsequent 4-m are non-negative, 0 5 m I 4. It should be 
noted that when some values of integral fitnesses are equal, their mutual order can 
be arbitrarily chosen, which leads to several possible sequences (6”). In particular, 
when all fitnesses are equal we can choose such an order that the sequence (6) will 
be an increasing-for-sign. 

Proposition 4 

Let all of the integral fitnesses be different. For convergence of any regular 
trajectory to an interior point of the simplex~ x, + x1 + x3 + x, = 1, it is necessary 
that the corresponding sequence (6”) be an increasing-for-sign. For proof see 
Appendix 4. 

Remark 

The case of non-equal fitnesses has been considered in Proposition 4. Clearly, 
definition (6) of a regular sequence is formally irrelevant to the case when all of the 
integral fitnesses are equal. Nevertheless, some elements of the above proof are also 
applicable in this case, provided that the sequence sign(fiji(n)) becomes stabilized. 
Namely, let a change in the sign be characteristic to the sequence (6”). Then, by a 
consideration analogous to that in the proof of Proposition 4, the following result 
could be obtained. Under the above conditions either the trajectory converges to 
the set D = 0 or at least one of the loci goes to fixation (this could be shown 
employing a chain of inequalities analogous to that of 22A-24A). 

As important examples of the described situtation we can consider ‘plus-concor- 
dant’ (I,& > I& i = 1, . . . ,p) and ‘minus-concordant’ (,,JJi < &, i = 1, . . . ,p) 
environments (Kirzhner et al., 1993, 1994a). Environments of these types arise in 
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schemes of stabilizing selection with moving optimum when the selected trait is 
controlled by additively acting genes (Maynard Smith, 1988; Kirzhner et al., 
1993, 1994a). Earlier we showed that the sign of linkage disequilibrium in such 
environments becomes stabilized and equal for all environmental states (Kirzhner et 
al., 1993, 1994a). According to (5) the sign of 6 in these cases also becomes 
stabilized. Thus, each trajectory of the corresponding system (1) in this special case 
is regular. The signs of 6,, , 8,, and &, & are opposite, and depend on plus- or 
minus-concordance of the environment. Therefore, we conclude that each trajectory 
in the sign-concordant environment is regular. However, it is worth mentioning 
here, that in massive numerical experiments with this class we have not been able 
to find a stable polymorphic situation. Due to this fact, Proposition 4 for the class 
of sign-concordant environments should be reformulated as follows: 

Corollary 

If the environment is minus-concordant, i.e. &, li4 < Zizli3, then the full dominance 
of integral fitnesses of haplotypes 2 and 3, 

L,,L,>Ll,L4 (7) 

is necessary for existence of an interior fixed point (because in this case we have 
filj, & 22 0, &, & 2 0). 

For plus-concordant environments the direction of the inequality (7) should be 
reversed. It is worthwhile to note, that condition (7) is an analogue of Proposition 
1 for a constant environment. 

For example, let the sign-concordant environmental selection be the result of an 
optimum movement with a fitness function F( . ), so that, 

$.i=F(lj-ai), Lj=F(rj-a,) . ..F(fj-ap). 

where tj stands for the selected trait value of haplotype j, and ai is the optimum level 
of t at the state i. If the selected trait t depends on two equal additive genes, then 
the conditions (7) will be as follows: 

F(t, - a,) 1 . . F(t, - ap) < F(t2 - a,) . . . F(t2 - a,), 

F(f4 -al) * 3 . F(t4 - ap) < F(f2 - aI) . . . F(t2 - ap) . 
(8) 

Clearly, these inequalities may be violated with some sets of a’s. If F = exp( -au*), 
then from (8) one can obtain: 

pt: - 2t,Zai + IZaf > pt: - 2t,Ea, + IEaf , 

pt: - 2tJai + Zaf > pt: - 2t,Xai + Xa,Z . 

For a selected trait increasing with the genotype number, 

(tl + f2)P < Wi)/P < (f2 + t4)/2 . 

Therefore, the necessary condition for polymorphism is that the mean of the 
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optimal values of the trait (over the environmental states) belongs to the interval 
([t, + b)1/2, [tz + t&9. 

The significance of the above obtained necessary conditions for existence of a 
polymorphic fixed point in sign-concordant environments can be illustrated by the 
fact that these conditions are indeed satisfied in the corresponding cases of constant 
environments, as well as in cyclical environments with a long selection-free period 
(Kirzhner et al., 1994b). 

Selection for an additively controlled trait 

Let us consider in more detail the case of selection for an additively controlled 
trait. The trait values of the four haplotypes are as follows: 

a A 

b m m + d,., 

B m + ds m + dA + dB 

Let dA = dB. Thus, fitness coefficients of Ab and aB are equal, 1e2 = le3. In the case 
of a constant environment, this system has been investigated by Feldman (1971). 
Consider first the case of a minus-concordant environment. Then, according to our 
previous results (Kirzhner et al., 1993, 1994a), for any trajectory, starting from 
some generation the linkage disequilibrium D will become negative. Thus, we can 
study just this part of any trajectory. From (1) one can easily obtain: 

x; -x; = I**(xz - x3)/W. 

Hence, the relations x2 < x3, x2 > x3, or x2 = xg are reproducing along the trajec- 
tory. Clearly, the first two cases are analogous, thus we consider only one of them, 
and the case of equality. 

Let x2 < x3. Then, for each of the environmental states, the following inequality 
holds: 

xi/x; = (x2 + rD)/(x, + rD) <x2/x3, (12) 

the equality being possible only when D = 0. Thus, either x2 + 0 or D -+ 0, or 
simultaneously x2 + 0 and D + 0. However, it follows from (1) that, if x2 +O at 
r = 0, then D +O also. We can conclude that for each trajectory with x2 = x3 at the 
beginning, the population converges to the set D = x1x4 - x2x3 = 0, which is, 
therefore, invariant with respect to the evolutionary operator (1). On any element 
of this set, and at any environmental state, the evolutionary operator gives 
ZilZi4x;x; = x$x;. Hence, x,x, = 0 and x2x3 = 0, because of the condition of minus- 
concordance, the inequality &, lid # 1 holds at least for only one of the states. This 
results in fixation for one or both loci. 

Now let x2 = x3. This set is invariant for the evolutionary operation. Fixation on 
this set goes, if at all, simultaneously at both loci. Indeed, let fixation be for locus 
A/a, e.g. allele a is lost. Then, x3 E 0 and xq = 0 and, therefore, x2 = 0. Thus, only 



100 Kirzhner et al. 

x, = 1 could be stable from the subset of points belonging to the border set of the 
simplex. It can be shown, that for local stability of the point x, = 1 on the set 
xa * x,, it is necessary that either, 

L,kL,,L, or Lz<L,.CL,, L,(l-r)PIL, (13) 

takes place. This condition will also be sufficient if non-rigorous inequalities are 
replaced by rigorous ones. The last statement can be proved analogously with 
Proposition 2. Indeed, provided x2 = x3, the evolutionary operator can be written 
as 

x;=l,(x,-rD)/W, x;=12(xZ+rD)/W, x;=14(x4--rD)/W. 

From the normalization condition x, + 2x, + x4 = 1, we have x1 = ( 1 - x, - x4)/2, 
so that it is sufficient to consider the evolutionary operator in the two-dimensional 
space (x,, x4). Clearly, vertex x, = 1 is a fixed point for all environmental states. 
For any state i, the Jacobian Ji at this point can be represented as 

L/l,i Ji21 
0 z4i(1 -  4/L ’ 

where the concrete value of the element J2, is not important for our analysis. The 
Jacobian J of the product of the evolutionary operators along the period is 
J=J,.. * J,. Consequently, the eigenvalue of J is the product of the eigenvalues of 
Jacobians taken over the states. Therefore, we have the conditions 

1 -.. 
21 . 12, PI I * * . I,, = L,/L, < 1 $ 

I 41 . . . 1,,( 1 - r)P/I,, . . . I,, = L4( 1 - r)p/L, < 1 , 

from which ( 13) immediately follows. 
In the same manner one can show the stability of the point x4 = 1 is within the 

set x2 = x3. We should recall that for minus-concordant environments the inequality 
L, L, - L,L, < 0 is true. Therefore, in minus-concordant environments, for cases of 
selection for additively acting genes with equal effects, only two types of inequalities 
are possible, either L, , L4 < L2 or L, < L, < L, . Clearly, mutual replacement of L, 
and L4 results in an essentially equivalent situation. 

Let L,, L, < L2 and, as before, x2 = x3. Then, according to (13), both points 
x, = 1 and x4 = 1 will be repelling and no alleles will lost along the trajectory. The 
limiting behavior of the trajectories remains, in general unclear, while the analytical 
results for the particular case of a constant environment (Feldman, 1971) and our 
numerical experiments for cyclically changing environments, show that all the 
trajectories starting from this set converge to one fixed polymorphic point. 

Now let L4 < L2 < L,, which is compatible, as before, with the conditions of 
minus-concordance, and with selection for additive genes with equal effects. Then, 
according to the previous analysis for the case x2 = x3, the point x, = 1 is locally 
attracting. Numerical experients enable the assumption that xi = 1 is also globally 
stable. We can now formulate two statements concerning population behavior 
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under cyclical selection for a trait controlled by two equal additive genes in 
sign-concordant environments. 

Proposition 5a 

The trajectory of the population in minus-concordant environments with an 
initial state x1 # x3 converges to the set x,x4 = 0 and xZxg = 0, losing, therefore, at 
least one allele. With the initial point x2 = xg, polymorphism is maintained if 
L, > L, = L3, L4 or L, = L, c L, < L4 and L4( 1 - T)~ < L,. 

For plus-concordant environments an analogous statement can be formulated. 

Proposition 5b 

The population trajectory in plus-concordant environments converges to the set 
x1 = xg. In this case, either a lost of polymorphism at both loci (x2 = x3 = 0 = 
x, = 1 or xq = 1) or convergence to a polymorphic state (if the last one exists) in the 
set x2 = x3 is possible. 

Proof of this Proposition is similar the previous one. Thus, only specific points 
characteristic to the considered situation should be mentioned here. According to 
our previous results (Kirzhner et al., 1993, 1994a), in plus-concordant environments 
with any trajectory, starting from some generation linkage disequilibrium D, will 
become positive. Thus, we can study just this part of any trajectory. In this case, the 
sign of the inequality (12) will be opposite, which means a growth of the ratio x2/x3 
along the trajectory. This growth continues as long as x2 #x3 or D # 0. The 
assumption of D s 0 along the trajectory leads to the condition x2 = x3 = 0, because 
L, L, - L2 L3 > 0 in plus-concordant environments. If D # 0, then x2 - x3 --+ 0, so 
that in all cases the trajectory converges to the diagonal. 

Now consider the diagonal x2 = x3 which is an invariant set of the operator (1) 
(for the case of equal gene effects). It is worth mentioning that in a plus-concordant 
environment the inequality max(L, , L4) > L, = L, occurs. It follows from the Proof 
of Proposition 2, that at least one of the points x, = 1 or x4 = 1 is locally stable 
provided that max(L, , L4) > L2 = L,. It is clear, that if both points, xi = 1 and 
x, = 1, are locally stable, then an interior saddle point should exist. In our 
numerical experiments all of the trajectories have converged to one of the border 
points of the simplex (i.e. we have here the case x2 = x3 = 0). 

In the case of zero-concordant environments, the sign of linkage disequilibrium D 
depends on the initial state of the trajectory (Kirzhner et al., 1993, 1994a). It has 
been shown above, that the limiting behavior of a trajectory depends on the sign of 
D along the trajectory. Thus, the behavior of any trajectory in zero-concordant 
environments should follows that of a plus- or minus-concordant environment. 

Therefore, haploid selection for an additively formed trait in sign-concordant 
environments is unable to maintain polymorphism, with the exception of the set 
x2 = x3 but, the mode of allele loss depends on the “sign” of the environment. In 
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the case of a minus-concordant environment only one of the two loci may become 
monomorphic, while in plus-concordant environments both loci go to fixation. 

The difference between these two types of limiting behavior can be better 
illustrated in the following terms. Consider a sign-concordant environment with an 
infinite set of states. The environment could be referred to as a controlled one if the 
sequence of the states follows any predetermined rule. Then, for any rule, if the 
environment is minus-concordant, the population loses some alleles. This result can 
be easily obtained by analogy with the case of a cyclical environment. However, if 
the environment is plus-concordant, then polymorphism maintenance is possible. 
Indeed, if for some state the inequalities 1, > IZ, 13, I, hold, then the point x, = 1 is 
attracting. If in some other state I, > I,, I,, 13, then the point x4 = 1 will be 
attracting. It is clear, that by a suitable alternation of these two states one can 
protect polymorphism for an unlimited time. The situation considered above with 
a regulated environment could appear in a program of pest population control 
using two pesticides (e.g. Mani, 1985). 

In conclusion, we note that the above results allow exclusion of situations where 
haploid two-locus selection caused by temporal fluctuations in the environment are 
unable to maintain polymorphism. On the other hand, the disturbance of the 
sign-concordance property is very promising in terms of polymorphism mainte- 
nance. Polymorphism may be expected in situations where “the amounts of 
selection” in plus- and minus-concordant states are more or less balanced within the 
period. The simplest example of such types of environmental changes is a two-state 
cyclical environment where in half of the period selection favours AB and ab 
haplotypes and in the other half Ab and aB are selected for, the intensity of 
selection being equal in both states (e.g., Sasaki and Iwasa, 1987). In this example, 
polymorphism exists and is even globally stable (see also Proposition 3). Further 
analysis of the effect of alternating plus- and minus-concordant environments has 
been done numerically. 

Computer simulations 

The experimental design 

The above analysis showed that polymorphism maintenance due to haploid 
selection in fluctuating environment, if possible at all, could be expected only in 
sign-nonconcordant environments. These expectations were tested based on massive 
numerical experiments. For each of the considered class of systems the following 
approach was employed in order to analyze the effect of the key parameters on 
polymorphism: 

(i) The first step was to define the class of systems to be studied, including 
parameters characterizing the mode of the changes in enviornmental states, and the 
fitness coefficients (see below). 

(ii) Generating random or deterministic samples of systems of the defined class. 
Uniformly distributed parameter values were used for each of the permissible sets. 
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(iii) For each of the parameter combinations, the volume of the set of initial 
points resulting in polymorphic trajectories was calculated using uniformly dis- 
tributed random starting points. 

Results 

Three types of systems were studied using this methodology: (1) a relatively 
general case of cyclical selection with a four-state environment; (2) the simplest 
system with two-state, sign-nonconcordant environment and; (3) a special case of 
selection in a three-state cyclical environment favouring consequently genotypes AB 
then Ab and aB, and finally ab. 

Cyclical selection with a four-state environment 

Let the cycle be of the following structure: C = (S, tl, S2t2, S, t,, S, t2), where 
si = {sli, s2i9 s3i, 4i s 1 is a set of selection coefficients of the considered genotypes and 
ti is the number of consecutive generations in the ith environment. The chosen 
condition, that the selection regime is the same in the 2nd and 4th states within the 
period, allows analysis of several groups of situations previously considered in the 
literature, and which have simple interpretations. Thus, we studied situations with 
increased t, and t, given fixed t2, and increased t, given fixed t, and t3. For each of 
these cases the size of a random sample from the space S, x S, x S, x r was 300,000 
(recall that r is recombination rate between the selected loci). The range of 
uniformity distributed selection coefficients in our Monte-Carlo simulations was 
[0, 11, and that of r E [0,0.5]. Each sample was iterated numerically from 100 
random initial points in order to estimate the size of any stable polymorphism 
attracting domains. 

The above analysis (see Sections 1 and 2) indicates that sign-concordant environ- 
ments are unfavorable from the point of view of polymorphism maintenance. This 
assumption was tested numerically for the considered class of four-state environ- 
ments. In the parametric space 25% of the systems correspond to sign-concordant 
situations. For them, we could expect fixation in, at least, one of the loci. In fact, 
in all cases of sign-concordant environment such a fixation was observed. For this 
reason, all subsequent comparisons were made with the sign-nonconcordant class 
(225,000 systems for each type of environment). 

The selection regime will be referred to as one of the Sturtevant-Mather’s type 
(SW-type) if the linkage disequilibria of the favoured haplotypes (say, Ab and aB), 
in the states S, and S,, are of the same sign and opposite to those in S2 (AB and 
ab) (Sturtevant and Mather, 1938). The situation when haplotype AB is favoured in 
S, , both Ab and aB in S,, and ab in S,, will be referred to as selection with moving 
optimum (or moving selection, MS-type), if the following ordering for the fitnesses 
holds: AB > Ab, aB > ab in S, ; Ab, aB > AB, ab in S,; ab > Ab, aB > AB in S3. It 
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is clear, that these two modes of classifications, being applied simultaneously, will --- 
give us four classes of systems: &V&MS, S&f&MS, SM&~MS and SM&MS. 

Two series of variation of the period structure were considered, starting from the 
situation with equal longitudes (ti = 2) of the four environmental states. In the first 
series, we consequently extended the proportion of longitudes t2 and t4 with 
identical selection regime (thereby making the environment more stable), while in 
the second series the longitudes of states with unequal selection regimes (t, and t3) 
are extended. In other words, for any period length, the diversity of “environmental 
challenges” to the genetic pool in the second series is higher than in the first one. 
Table 1 shows the proportion of polymorphic cases among each of the four types --- 
of selection regimes (SM&MS, SM&MS, SM&MS, andSikf&MS), and along all 
systems. As expected, polymorphic systems are more frequent in the second series. 

As mentioned above, the simulated systems were cross-classified according to two 
types of selection. It can be seen from the results presented in Table 1 that moving 
selection is the most effective for polymorphism maintenance in more diverse 
environments (second series). Namely, within this type of system, the proportion of 
polymorphic cases is much higher than in the whole set. In the first series, where the 
environment is more stable, the proportion of polymorphic cases follows the 
average observed in the whole set. 

The distribution of the recombination rates for the systems which where poly- 
morphic is presented in Fig. 1. For the first series a tendency to a bimodality in 

Table 1. Proportion of polymorphic cases among four classes of cyclical selection regimes as a function 
of the period structure. 

Environment Proportion of polymorphic regimes (%) 
‘1 ‘2 13 t2 

Among Within the type 
all -- - 

systems SM&MS =&MS SM&MS SM&MS 

Series 1 
2 2 2 2 
2 4 2 4 
2 6 2 6 
2 8 2 8 
2 12 2 12 

Series 2 
2 2 2 2 
4 2 4 2 
6 2 6 2 
8 2 8 2 

12 2 12 2 

0.33 
0.28 
0.19 
0.14 
0.07 

0.33 0.36 0.18 0.19 
1.05 1.18 1.83 0.38 
1.42 1.63 2.74 0.35 
1.45 1.69 2.74 0.26 
1.16 1.35 1.83 0.16 

0.36 
0.28 
0.18 
0.13 
0.07 

0.18 0.19 0.87 
0.18 0.25 0.00 
0.00 0.23 0.00 
0.00 0.19 0.00 
0.00 0.07 0.00 

0.87 
0.00 
0.00 
0.00 
0.00 

The values fi (i = 1, . . ,4) stand for the number of generations in the ith environmental state within the 
period. SM and MS denote selection regimes of the Sturtevant-Mather and moving optimum types, 
respectively. The upper lines marks the absence of the respective property. The two series of experiments 
correspond to a consequent elongation of a certain part of the cycle. 
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Fig. 1. The distribution of the recombination rate (r) in haploid two locus systems where cyclical 
selection results in stable polymorphism as a function of the period structure. The values ti (i = 1, ,4) 
stand for the number of generations in the ith environmental state within the period. The mean value 
of r is marked by arrows on the axis r. 

distribution could be seen with increased period length, the mean value of r 
decreased from 0.35 ‘to 0.30. In the second series the distribution is unimodal with 
mean r decreasing from 0.35 to 0.22. 

A system with two-state sign-nonconcordant environments 

A two-state environment with fitness coefficients of genotypes AB, Ab, aB, and ab 
being 1, q2, q3, 1 in the first state and q2, 1, 1, q3 in the second one (q2, q3 I 1) was 
studied. Here, the coefficient of integral fitness disequilibrium is zero and the system 
is close to the model considered by Sasaki and Iwasa (1987). If q2 = q3 then, 
according to Proposition 3, the system has a globally stable polymorphism (see also 
Appendix A from Sasaki and Iwasa, 1987). It is reasonable to assume that the system 
is structurally stable, i.e. small deviations from the above conditions will not disturb 
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Fig. 2. Dependence of the size of the selection parameter domain corresponding to polymorphism 
maintenance by seasonal (alternating) changes in fitness coefficients: (1, q2, q3, 1) in one season, and 
(q2, 1, 1, q3) in the other, for haplotypes AB, Ab, a& and ab, respectively. Domain A corresponds to 
recombination r = 0.3, while the broader domain B corresponds to I = 0.5. 

the stability (at least not the local one). Our numerical studies are an attempt to 
estimate how large these deviations could be at different recombination values (r). 
We found that for each r the set of polymorphic systems corresponds in the space 
of parameters q2 x q3 to some domain which is symmetric with respect to the 
diagonal q2 = q3. Figure 2 shows the results obtained for r = 0.3 (domain A) and 
r = 0.5 (domain B) for selection coefficients in the range 0.02-0.30. It is clear, that 
with increasing selection intensity or recombination rate the level of asymmetry 
compatible with polymorphism is also increasing. 

Moving selection in a three-state environment Cfavoring genotypes AB; Ab and aB; 
and ab). 

This class of situations could be considered as a special case of moving selection. 
The selection regime was defined by the formula (S, t,, S2t2, &t,), where 
S, = (1, q, q, q), S, = (q, 1, 1, q), S, = (q, q, q, l), q < 1. For the results presented in 
Fig. 3 the following structure of the period was used: tl = t3 = 3, t2 = 6. It can easily 
be seen that with relaxed selection the size of the polymorphism attracting domain 
(v) is decreasing. The effect of recombination is non-linear: for every value of q 
(from some range q1 c q c q2) a pair of recombination rates ri , r, can be found 
such that polymorphism is absent outside the interval r, <r < r2 (v = 0) while 
within the interval 0 < v I 1. For the chosen t, , t2, and t3, we estimated that 
q, x 0.3 and q2 x 0.56. It is clear that if selection is too weak, (q > q2) polymor- 
phism is impossible at any recombination rate. With strong enough selection 
(q < q,) polymorphism is globally stable at any recombination rate. It is notewor- 
thy that, selection intensity in nature is usually much weaker, but strong selection 
can not be considered as an exclusion (Ford, 1971). 
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Fig. 3. The dependence of the volume (v) of the interior attracting set on selection intensity (q) and 
recombination rate (r) in a three-state cyclic environment. The sets of fitness coefficients of the four 
haplotypes are (q, q. q, I), (q, 1, 1, q), and (1, q, q, q) (0 I q 5 I), for the states 1, 2, and 3, respectively. 
If most of the trajectories are converging to the interior of the symplex, then v is close to unity. If most 
of the trajectories go to the border set, than u is close to zero. The Figure represents the results of 
estimation of v based on 500 random runs for each combination of the parameters. 

Discussion 

Haploid selection models are of special interest in evaluating putative factors 
promoting polymorphism in nature. This is due to the fact that these can be 
considered as pure models without any hidden form of heterozygote advantage. 
Fluctuating environment may, in principle, maintain polymorphism due to diploid 
selection as well (Haldane and Jayakar, 1963; Hedrick, 1986; Karol et al., 1993, 
1994; but see Lande, 1976). However, to better understand the effect of interactions 
between recombination and fluctuating selection on polymorphism, haploid models 
are preferable because they are simpler and independent of heterosis for fitness. It 
is worthwhile to recall that cyclical haploid selection in the one-locus case can 
produce only neutral polymorphism (Nagylaki, 1975; Hendrick, 1978). 

In addition to the problem of polymorphism maintenance, analysis of fluctuating 
haploid selection could be of interest for studies in other fields, for example 
recombination evolution (e.g. Sasaki & Iwasa, 1987) and evolution of life cycles 
(haploidy-diploidy). The last problem has been considered in terms of selection 
against harmful mutations (Kondrashov and Crow, 1991; Perrot et al., 1991), the 
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selection in constant environments (Jenkins, 1993). However, fluctuating selection, 
acting simultaneously at the haploid and diploid level, could also play an important 
role in the evolution of the life cycle (Nevo et al., in preparation). 

In the first part of this paper we have studied some general conditions for 
polymorphism stability in haploid, two-locus cyclical selection models. As a basic 
system we also considered general haploid selection in constant environments. For 
the latter case we showed that no more than one fixed polymorphic point could 
exist; a criterion for the existence of such a point was obtained, and the coordinates 
of the fixed point were found. Based on numerical analysis of the spectrum of linear 
approximation, it can be shown that a real eigenvalue exceeding unity always exists 
(with exception of special neutral cases, e.g. when all selection coefficients are equal 
to each other). 

Therefore, it is clear, that polymorphism stability in temporarily changing 
environments (if it exists at all) is precisely the result of environmental variation, i.e. 
it can not be a “relic” of selection in a constant environment. However, in haploid 
systems with non-overlapping generations, polymorphism produced by changing 
environments can be globally stable. Indeed, according to Proposition 2, the 
necessary conditions for global stability are equalities. These conditions hold for the 
haploid model of selection regime of Sturtevant-Mather’s type (for example, Sasaki 
and Iwasa, 1987). These conditions can also be sufficient, as shown in our 
Proposition 3. Proposition 2 practically precludes the existence of global stability of 
polymorphism. However, the internal stable equilibrium point is, to some extent, 
structurally stable (see Iwasa and Sasaki, 1987; and our simulation results in 
Section 3.2). 

It was shown that in models with variable selection, the fitness functions usually 
used in the literature lead to a class of environmental changes which could be 
named as sign-concordant (Kirzhner et al., 1993, 1994a). For this class, the above 
considered necessary conditions for existence of a fixed point (Proposition 4) are 
close to analogous conditions for the case of a constant environment (which, in this 
situation, are also sufficient ones). 

Consider a situation, where sign-concordant environmental selection occurs for a 
trait controlled by two additive genes with equal effects. In the case of minus-con- 
cordant environments we found no polymorphism for most of the trajectories. The 
only exceptions are the trajectories starting (and remaining) in the diagonal x2 = x3 
(note also that the diagonal is a repeller for the trajectories starting outside of it). 
For plus-concordant environments, the diagonal x1 = xj is an attracting set. How- 
ever, numerical analysis shows that the system goes to fixation along the diagonal. 

Therefore, we conclude, that the phase space of the population in fluctuating 
sign-concordant environments looks like that of constant selection. Even if it has a 
fixed point, this point is unstable. This conclusion was confirmed in our massive 
numerical experiments. Polymorphism, if possible at all, can be found in sign 
non-concordant environments where the effects of states with opposite signs are 
“balanced” within the environmental cycle. 

Theoretical considerations in the first part of paper help to exclude the class of 
situations where stable polymorphism is impossible. Thus, we had to check, if 
polymorphism could exist in the remainder, presumably more perspective, class of 
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systems (with sign non-concordant environments). This was done by numerical 
modelling. The results presented in the second part of the paper are concerned with 
polymorphism maintenance in two special cases, and one more general situation. The 
last one includes, among other regimes, selection with moving optimum and selection 
of the Sturtevant-Mather type. Polymorphism was found in all four types of the 
considered selection regimes, but the proportion of polymorphic systems depends on 
how the opposite selection tendencies are balanced within the period. In the special 
case of “non-Sturtevant-Mather, but moving selection” type, the proportion of 
polymorphic regimes is much higher than in the general case. 

An important role of the recombination rate in polymorphism maintenance should 
be stressed. The distribution of the recombination rate among the systems which 
occurred to be polymorphic depends on the period structure and length: the less 
variable are the environmental conditions (e.g. due to increased period length) the 
lower is the recombination rate compatible with polymorphism. 

In case (2) of two-state environment, with selection of Sturtevant-Mather type, 
recombination level is also critical for polymorphism maintenance: the higher r, the 
larger the size of the polymorphism attracting domain (see Fig. 2). Recall, that 
symmetric versions of this haploid selection regime were also considered earlier by 
Sasaki and Iwasa ( 1987). 

In case (3) of moving selection we also have an appreciable proportion of 
polymorphic systems. And here again, the existence of polymorphism depends on r: 
for every level of selection intensity a pair of recombination values r, , r2 can be found 
such that polymorphism is possible only within the interval rl < r < r2. 

Strong dependence of the behavior of two- or multilocus systems on recombination 
has been found in different studies. Thus, Lewontin (1974) established for symmetric 
viability diploid selection (in constant environment) the existence of a critical value 
r = r * such that for r > r * the population reaches asymptotically linkage equilibrium 
D, = 0 while for r -C r* D, # 0. Moreover, Ewens (1968) found that for some 
selection regimes the range of r values (0 .ZZ r I 0.5) is even non-continuous and could 
include more than one subinterval corresponding to D, # 0 (Ewens, 1968). 

These facts, as well as many other models showing the qualitative importance of 
recombination in the two locus system behavior are, to an extent, in contrast with 
some multilocus models assuming weak selection (e.g., Lande, 1976). Lande (1976) 
showed that weak diploid selection with a fluctuating optimum does not help in 
maintenance of polymorphism for additive genes. Our findings could be considered 
as complementary to these results. We demonstrated that with strong enough selec- 
tion and some restrictions on recombination, fluctuating selection can result in stable 
polymorphism with a quite large volume of the polymorphism attracting domain. 
This result also hold in the case of diploid selection (Korol et al., 1993, 1994). 
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Appendix 1 

Proof of Proposition 1. Let us consider the process of transition from one 
generation to the next as the successive action of two operators - (a) random mating 
followed by crossing over, and (b) selection; as described by the following transfor- 
mation: 

2, = 2, - r6, &=i?,-rB, K,=&+rB, iY3=i3+rB, (4 
i; = 1,2,/L, i; = l&/L, 2; = &lL, a; = I&/L ) (b) 

where, L = l,K, + I& + I& + l&. 
At the initial state the population is characterized by a vector 2, which is 

transformed by the above two operators, (a) and (b), into 2 and 2, consequently. 
It is clear, that operator (a) does not change allele frequencies. Therefore, for 

stability of a polymorphic point it is necessary that the selection operator (b) does 
not change allele frequencies at this point. 

Lemma Al 

The set of population states with unchanged allele frequencies after the selection 
operator has the form, 

x1= -/w3P4lW), x2= PlP3P4Iw) 3 
x3 = Pl w4lW), x4 = -CL1 hP3lW) 9 

(14 

where, 

6(L)=-~Z~3~4+~1~~3~4+~1~2~4-~1~2~3, h=limL, 

if one of the following alternative inequalities holds: 

I,, l4 2 L 2 12, l3 or I,, l4 I L 15 12, l3 . 

Proof 

The population state 1 = (Zi , f2, 1,) Z4) with unchanged allele frequencies after 
the selection operator action, should obey the equations, 

I, 3, + l,f?, = L(2, + a,), I,21 + 131, = L& + X3) ) 

2222 + 1424 = L(Z2 + Z4), 1323 + z,a, = L(T3 + a,> ) 
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or, 
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(24 

p2z.z + p&E4 = 0, p$3 + p& = 0 ) 

where pi = Zi -L. It follows from (2A), that each of the products p,p2, p,p3, pL2p4, 
and pLgpd should be negative, assuming that all of the haplotype frequencies are 
positive. Because of symmetry, it is enough to consider the case when I, has the 
largest fitness. It is clear that in this case ,D, > 0, so that p2 < 0, which also leads to 
pu, > 0 and therefore, ~1~ < 0. Thus, if I, is the largest among selection coefficients, 
then I, 2 I4 2 L 2 12, I,. 

Using similar considerations we can easily obtain the necessary conditions for the 
existence of a positive solution to the system (2A) for a general case given either of 
the two following conditions: I,, I4 2 L 2 12, I3 or I,, I, 5 L I I,, 13. Note, that the 
system (2A) is degenerated and the last equation of (2A) may be replaced by the 
normalization condition in the simplex, i.e.: 

PIX, + p2x2 = 0, PI x1 + p3x3 = 0, p2x2 + p4x4 = 0, 
XI + * * .+x,=1. 

The solution of this system is, 

% = -p2p3p4/6(L), z2 = hp3p4/6(L) 3 

13 = CL* P*P4lW)9 24 = -PLI P2P3/W f 

where, 

(3A) 

The solution depends on the parameter L, and the value L is a function of variables 
2: 

L = 1,1, + I& + I& + 14.z4 . 

Indeed, it follows from (4A) that 

L - -t/I - L + L)p2p3p4/8(L) + (l2 - L + L)h~3~4/8tL) 

+ (l3 + L + Lh p2p4/d(L) - tz4 - L + L)h p2p3/8(L) * 

Therefore, (4A) determines a one-parametric set (a curve) in the space of 
population states, each point of which is transformed by the selection operator 
without changing allele frequencies. 

The solution 4A is valid only if 6(L) = 0. Clearly, 6(L) is a polynomial of the 
third degree of L. Without loss of generality, we assume, that I, 2 l4 2 Z2 2 13. The 
last ordering correspondings to Lemma Al and because of symmetry it may be 
considered as a general one. It is easy to see that a(/,), 6(1,) 2 0, 6(1,), 6(1,) I 0. By 
taking into account the ordering of Zi, one can check that nowhere within the 
interval (G, I,), is 6(L) zero. Thus, (4A) is always valid. The population states 
defined in accordance to Lemma Al satisfy the necessary conditions for an internal 
fixed point. In order to get the sufficient conditions, let us now apply the mating 
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21 = -~IP~PGJ(LWN - rR 22 = ~+IP~P&W)) + rD, 
2.3 = bowel + rR 24 = -b~w&W)) - rD, (54 

D = PI ~2~4 41~3 - MP, CLJI(LWN~ . 

If the considered point is a fixed one, then the value f is determined by the relations 
in (4A), so that from (4A) and (5A) we obtain, 

-PL~P&W) = -~IPLw&~LN - rD, 

PICL~PGW = ~PGJ(LWN + rD, 

PIW&WJ = ~~P~PzP~I(LWN + rD, 

-PIPL~PJW = -~P~P~PJGW)) -t-D. 
Each of the last four relations can be transformed into the following equation for 
L: 

h P~P~P&W) + 44 b2p3 - ZAp, p4)] = 0 (64 

The solutions of (6A) from the interval determined by the inequalities of Lemma 
Al give the fixed values for the dynamic system (1). It has been assumed earlier that 
1, 2 Z4 2 1, 2 13. However, it is clear that this assumption does not effect the 
generality of our consideration. According to Lemma Al it is necessary to find the 
roots of (6A) in the range 1, I L 5 Id. However, the values L = lz, 1, are irrelevant 
because these solutions correspond, in accordance with (Al), to fixed states with no 
polymorphism. Thus, we should find the roots of the polynomial 

P(L) = ML) + dhh2k - l2hkJ = 0 
For analysis it is convenient to transform P(L) to the form, 

4 14cLzcL3 - l213APLq = 44t12 - Jw, - L) - MU, - Jw, - L) 

= wt4 4 - 1*4) - Al 2 

(7.4) 

6(L) = L2(1, - 1, - 13 + 14) - 2L(l, 1, - 1213) + 6(O) ) 

S( 0) = - I,13 14 + 1, 1314 + 1, 1,14 - I,12 13 . 

Then, from (7A) we obtain, 

P(L) =L{(L2(1, -l,-l,+l,) +b(O)(l -r)) -(2-r)L(Z,l,-121,)}=0. 

034 
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Therefore, polynomial P(L) has the root L = 0 as well as others. Using (7A) we 
note 

W 1 = - 4 U2 - 1, Xl3 - 4 )G - 4 1 + 44 4U2 - 1, Xl3 4 N , 

Ptl2) = 12G - 12X13 - l2)U4 - 12) + r( -124(& - MlJ2N, 

Wd = Ml, - Ml2 - lN4 - 13) + 4 -121& - MU3N , 

P(h) = -14& - lN2 - 4)(4 - LJ + 44 l&2 - MUJ) . 
At r = 0 I’(],) > 0, P(Id) < 0 and P(I,) < 0, I’(&) > 0, so that the non-zero roots are 
in the intervals (II, &) and (I,, 13), but outside of the demanded interval 1, I L s 14. 
An increase in r does not affect the sign’of P(I,), but it may change the sign of P(/,), 
resulting in appearance of the root in the interval (I,, 12). The second root should 
always be in the interval (I,, -co), because in this interval the sign of the 
polynomial P(L) is changed from - to + . Therefore, we can consider the following 
inequality as a criterion for existence of a suitable root: 

PUd = -Ml, - MU2 - l&l3 - 4) + rU, Ml2 - Ml3 - LJ) > 0 

or, 

so that r > (1, - 1,)/l,. Using (BA) we can find a corresponding root L: 

L = ((2 - r)G 4 - 1213> + JW - r)(bh - U3)12 
- 46 - 12 - 1, + 4)&W 1 - rNl/t 2% - 1, - l3 + Ld) 

These calculations together with Lemma Al prove Proposition 1. 
(9A) 

Appendix 2 

Proof of Proposition 2 

We shall consider Jacobian J of system (1) in the vertex x, = 1 of simplex YZ, 
assuming variables x1, x2, xq are independent and x3 = 1 - x, - x2 - x,: 

12lll * * 

0 hll, * (104 
0 0 (1 - r)l,/l, ’ 

where the asterisk stays for some elements of Jacobian. It is clear, to a first 
approximation, that the vertex x1 = 1 of the simplex is stable if either 1r is the 
largest fitness (I, > 12, l,, Ia), or 1, 2 1, > 12, 1, and simultaneously ( 1 - r)l, /I, < 1. 

Let population evolution occur in an environment with p states, alternating in 
any order within a period of the length p (the order not necessarily being the same 
across periods). Then, at the end of a period the linear approximation at the vertex 
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xi = 1 of simplex X is a product of approximations of the form (IOA): 
J=J,J2** * J,,. Hence, the values, 

(114 

and 
(1 - r)Pl,,I,, . . . lfi/l,,lz, . . . I,, = (1 - r)PL,/L, 

are eigenvalues of the Jacobian J. Then, the form of the spectrum of linear 
approximation and the above inequalities give proof for Proposition 2. 

Appendix 3 

Proof of Proposition 3 

According to (1) the evolutionary equations connecting two consecutive periods 
can be written as 

x;=L,x,/W’W-L,rD’lW’W-I,,rDIW, 

x;‘=L2x2/W’W+LZrD’/W’W+l,,rDlW, 

x;=L,x,IW’W+L,rD’lW’W+I,,rDIW, 
(124 

xl;=L,x,lW’W-L,rD’IW’W-I,,rD/W. 

The variables characterizing the “omitted” generation are marked by stroke. It 
follows from ( 12A) that 

1=C/W’W+(-I,,+112+Z,3-I,,)rD/W. (13A) 
It is worth noting that 6 = 0 and, according to Kirzhner et al. (1993, 1994a), along 
any trajectory sign(D) acquires an invariable sign for a finite number of steps, i.e. 
plus in one environmental state and minus in the other. More specifically, a positive 
sign of D is found when I,, = 1i4 = 1, and I,, = I,, = C, and a negative sign for D in 
the alternative state. 

Consider a trajectory after sign stabilization. Let us assume, that we began with 
a state where D 2 0. Then, from (13A) it follows 1 = CIIV’W + (2C - 2)D/ W, so 
that C/ W’W 5 1. The last inequality is strict if D = 0. We also assume that in the 
initial state x, 2 xq and x2 2 x3. It is easy to see that these relations along the 
trajectory do not change. The last fact follows from (12A). Namely, 

o~x~-x;=(x,-xx3)c/wIw, o~x;-x~=(x,-xxq)c/~w. 

Therefore, the consecutive values of x2 - x3, as well as x, -x4, decrease along the 
trajectory (across periods). If in the initial state none of xi is zero, then 

o~x,-x~<q,<l, osx~-xx,<q,<l, q,+q2<1 (14A) 
and these inequalities will remain along the trajectory. It follows from this, that 
extinction of alleles is impossible. Indeed, fixation at both loci (i.e. either x, = 1 or 
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x2 = 1) contradicts to the inequalities (14A). If only one allele is lost, then 
x3 = xq = 0 and xi + x2 = 1, which also contradicts (14A). 

It is easy to show that if there is no extinction of alleles, the surface D = 0 is not 
invariant for the operator (1). Indeed, for some generations let D = 0. According to 
( 12A), D” can be presented in the form 

D” = c2[(x1 - rD’)(x, - rD’) - (x2 + rD’)(x3 + rD’)]/WW’ , 

so that, 

D” = c2[D - rD’]/ WW’ = c”[ -rD’]/ WW’ , (15A) 
because D = 0. Therefore, if D” = 0, then D’ should also be zero. However, for 
C > 1 and xi > 0, the variables D’ = C2x,x, - x2x3 and D = x,x4 - x2x3 can not be 
equal to zero simultaneously. Thus, if D = 0, then D” # 0. Now consider an 
arbitrary trajectory and the set of the limiting states of the population. The 
differences X, - xq (as well as x2 - x3) will be equal for all elements of this limiting 
set, because they are not increasing along the trajectory. On the other hand, because 
of the above connection between D and D”, at least one state with D # 0 should 
exist in this limiting set. At this state, 1 > C/ WW’ and therefore, the differences 
xi - xq and x2-x3 should decrease (if they were non-zero). This means the 
convergence of the trajectory to the diagonal xi = x,, x2 = x3. 

On this diagonal, the evolutionary transformation reduces to 

xi =(x, - rD)lW, xi = C(x, + rD)/W, 

x; = C(x; - rD’)/W’, xi = (xi + rD’)/W’ , 

where the values W and w’ are calculated from the normalization condition; 
x, + x2 = 0.5 and, hence, D = x: - xz = 0.5(x, - x2). From this operator it is easy 
to move on to the one-dimension problem: assuming that xi/x2 = u we obtain for 
both of the environmental states a homographic transformation, 

24’ = (l/C)F(u), UM = CF(u’) ) (1W 

where F = ((2 - r)u + r)/((ru + (2 - r)). For u 2 0, the derivative of F, dF/du = 
4( 1 - r)/(ru + (2 - r))2 is positive (recall that r 5 0.5). It is easy to show that 
dF/du .S 1 and dF/du = 1 only if u = 0 and r = 0. Clearly, the derivative of the 
superposition u” = CF(u’) = CF(( l/C)F(u)) (from (16A)) does not exceed unity. 
Therefore, the transformation of the population genetic structure during an envi- 
ronmental cycle is defined by a compression evolutionary operator in one-dimen- 
sional space. Consequently, any trajectory from the diagonal set converges to one 
stable point (which will be referred to as X” = (XT, Xy, X7, XT)). 

Remark 

The final part of proof is easy to extend to a more general situation. If, for the 
operator (l), with p > 2 the diagonal x, = x,, x2 =x3 is invariant, then in this 
invariant set stable polymorphism always exists. 
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Therefore, we proved that population trajectories starting outside the diagonal 
converge monotonically to the diagonal, while the trajectories starting at the 
diagonal converge to a unique stable point X”. One could assume that trajectories 
starting from any arbitrary point will converge to X”. Let us prove this statement. 
To do that it will be enough to consider the fate of a trajectory which starts in the 
vicinity of the diagonal. 

Let x, = x4 + r4 and x2 = x3 + r3, where r4 and r3 are small. Due to the condi- 
tions x1 2 x4 and x2 2 x3 accepted at the beginning of the consideration, the 
variables are non-negative. Clearly, 

x3 + xq = 0.q 1 - t‘l - 73) , 

so that, 

D = x,x4 - x2x3 = 0.5(x, - x3)( 1 - r4 - r3) + r4x4 - t3x3 

= 0.5(x, - x3) + z ) 

where T is a small variable of the same order as r3 and t4. Let as now show the 
following. With a possible exception of the initial point, the trajectory started 
anywhere in the vicinity of the diagonal will enter by one step and remain in some 
domain M separated from zero. Indeed, according to the evolutionary equations, 
for any of the environmental states, 

=((2-r)x,+rx,+zr)/2W, 

xi = C(x, - rD)/ W = C(x, - 0.5r(x, - x3) + zr)/ W 

=C((2-r)x,+rx,+zr)/2W. 

Assuming that r 9 r, we obtain, with a precision of O(r), 

xi > 0.5( 1 - t4 - r,)C min((2 - r), r)/2( 1 + C) , 
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xi > 0.5( 1 - tq - t3)C min((2 - r), r)/2( 1 + C) , 

because, W < 2( 1 + C). 
Analogously, we can get estimates of x3 and x4 for the alternative environmental 

state. Thus, we can conclude, that all of the trajectories which interest us, belong to 
the set M. 

From (17A) it follows that, 

xi/x; = C(x, - rD)/(x, + rD) 

= C(( 2 - r)x4 + rx3 + zr)/(( 2 - r)x3 + rx4 + zr) . 

By substitution u = x,/x,, the last relationship could be represented as, 

2.4’ = C((2 - r)z4 + r + zr/x,)/((2 - r) + ru + v/x3). 

For the further consideration we can assume that v/x, = O(r), because the trajecto- 
ries belong to set M separated from zero and, therefore, x3 > tl, where a is some 
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positive constant. Similarly, for the alternative state, 

24’ = (l/C)((2 - r)u’ + r + z’r/x,)/((2 - r) + ru’ + t/r/x,) . 

From the relationships for u’ and U” we can readily get, 

u” = (llC)(Qu + 1 + ~1, )l(u + Q + PA (184 

where 11, and p2 are of the same order as z3 and zq, and 

Q = ((2 - r)2 + Cr”)/(r(2 - r)( 1 + C)) (provided r # 0) 

Consider two population states which are close enough to the diagonal. Using 
(18A), we can get for these states, 

14’ - u;l = WC)l<Qu, + 1 + P,I)/(UI + Q + 142) 

- (Qu2 + 1 + ~2,)/(~2 + Q + ru22)1= Slu, - ~21, (19A) 

where, 

S = ( W)l((Q2 - 1) + PI, llu, - u2I)Ih + Q + ,42)(~2 + Q + ~22)) . 
It is easy to see that, 

(UI + Q + ~,2#2 + Q + ~22) > tQ + Oh + ~22))~ . 
Taking into account this inequality and assuming that p,, /(u, - u21 c 1, we will 
obtain the following estimation: 

S 5 (W)(lQ2 - II+ IPII/~UI - 4 IMu, + Q + ~,2)(~2 + Q +~22) 

< U/C)((Q2 - II+ l>/(Q + WP,, + ~22))~. 

Now let us show that, 

WC)(lQ2 - II+ l>/(Q + Oh2 + ~22))~ < 1 . ( 20N 

Indeed, if Q 2 1, then Q2 - 1 + 1 < C(Q + O(P,~ + p22))2, given small enough 
values for pcl12 and p22. If Q < 1 then 

1 - Q2 + 1 < C(Q + Oh2 + ~22))~. 

The last inequality is true if, 

2 < Cl+ C)Q’ + Oh,2 + 1122) 9 VW 

Now, in the chain of the inequalities, 

4C/( 1 + C)2 < Q2 e 4Cr2(2 - r)’ < ((2 - r)’ + Cr2)2 

9 0 < (( 2 - r)’ - Cr2)2 

the last one is trivially true. Thus, 2 < (1 + C)Q’, because from C > 1 it follows 
that 2 c 4C/( 1 + C). It is clear, that for small enough values of p,2 + p22, the 
inequality (21A) holds, so that S < 1. Therefore, if ~1, , /lu, - u2) < 1, then S < 1 and 
\u; - u;J < Ju, - u2J. 
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Let the second of the considered population states coincide with the stable point 
X” = (Xy, XF, X$, Xr), so that u2 = Xr/Xp. Let x = (xi, x2, x3, x4) and 
x” = (x;l, xi, xi, xl;) be two consequent population states taken over the full 
period. The last result means, that if x deviates from the diagonal less than for 
Ix& - G’/X?l, th en xl;/x; is closer to XT/X? than x,/x,. We can conclude, that 
each trajectory starting close enough to the diagonal enters into the neighborhood 
of the stable point X”, with a radius of the same order as that of the distance 
between the current point of the trajectory and the diagonal. Starting from this 
moment p,, > Ia, - uZI, i.e. pi,/1 u, - u21 > 1, and then the previous estimations are 
false. Thus, the trajectory could jump out of the neighborhood. Let us estimate the 
radius of the new neighborhood. According to (19A), 

14 - u;l * U/C){l(Q2 - l)lu, - uzl>/(u, + Q + PI&Z + Q + ~n)l) 

+I~,~/(~,+Q+~,~)(u~+Q+~~,)I. 
Using the above estimation of S, we can get from last inequality: 

14 - ul;l s s&4 - 4 + WP*,) 9 
where S, c 1. It is clear, that pull vanishes, because the trajectory converges 
monotonically to the diagonal. Thus, the radiuses of the considered two neighbor- 
hoods should also vanish. Therefore, the trajectory converges to the stable point 
X”, possibly with dumping oscillations around X”. 

This concludes the proof that a global stable polymorphism exists in this system. 

Appendix 4 

Proof of the Proposition 4 

Consider some regular trajectory, i.e. some environmental state i exists such that 
the condition (6) holds. Starting from the state i and iterating the formulae of 
evolution (1) along the period, it is easy to connect xi in the state i in two 
neighboring cycles: 

iji = (Lj /R)xji + rBji , (224 

where Bji is determined by (5); j is the haplotype number (j = 1,2,3,4); and xii is 
the frequency of the haplotype j at environmental state i (i = 1, . . . ,p). Let us 
examine a regular trajectory beginning from a moment, when the signs of fiji for all 
pairs ji become stabilized and the sequence (6”) is ordered in accordance with 
increasing integral fitnesses L. If the last sequence is not an increasing-for-sign one, 
then for some pair of numbers, j4 and j4 + , , the following inequality holds: 

Ljq ’ Ljq + I 3 Bjqi20, Bjq+,iSO. 

Using (22A), we obtain, 
(23A) 

i;qi12;q + ,i = (CLjq/ w)xjqi + rBjqi)/((Ljq + ,i/W)Xj, + ,i + rBj, + ,i . 
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then, taking into account the signs of D as determined by (23A), we finally obtain: 

?J,i lijq + , i ’ CLjqxjqi>lCLj4 + lixj, + ,i> . (24~) 

Then, it follows from (23A), that 

t=LjqILjq+,>l, 

and, in accordance with (24A), the frequency of haplotype with number j,+ , 
converges to zero exponentially with the power In(t). 

Therefore, for regular trajectories the assumption of a disturbance of increasing- 
for-sign of an ordered sequence (6”) results in extinction of at least one allele along 
the trajectory. The proposition is thus proven. 


