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Abstract

To classify different types of cyclic selection, a measure of fitness disequilibrium
was used, and a class of systems were considered where this measure has the same
sign in all states (sign-concordant environments). The necessary conditions for
existence of a fixed point (considering any moment within the period as a referring
one) are obtained for sign-concordant systems. However, analytical study of such
systems, in the case of selection for equal additive genes, and numerical testing of
more general situations, allowed us to conclude that no polymorphism is possible.
In the alternative class of sign-nonconcordant systems, polymorphism is possible.
However, we found that global stability is an exception rather than a rule for
sign-nonconcordant systems. Massive numerical simulations of selection in a four-
state environment were made for cycle lengths in the range 8-28 and with evenly
distributed selection coefficients. The proportion of polymorphic regimes ranged up
to about 1.5%, and was dependent on the recombination rate between the loci. It
should be stressed, that polymorphism maintenance in the haploid systems, when it
is possible, can not be considered as an effect derived from constant selection, or be
a result of any hidden form of heterozygous advantage. In other words, polymor-
phism stability is causally connected with environmental fluctuations. Equally
important is that this effect of fluctuations is only possible because of recombina-
tion: in single locus systems haploid cyclical selection is unable to produce protected
polymorphism.

* Author to whom correspondence should be addressed.
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Introduction

Among different explanations for high levels of genetic variability in nature,
spatial and temporal variations of selection intensity were considered as very
plausible for a long time. The first theoretical models have confirmed this expecta-
tion but strongly delimited the conditions of their applicability (Levene, 1953;
Haldane and Jayakar, 1963; and others. For reviews see also Felsenstein, 1976;
Gillespie and Langley, 1976; Hendrick et al., 1976; Hendrick, 1986). The range of
parameters compatible with stable polymorphism proved to be much narrower in
the case of temporal fluctuations as compared to spatial ones. The conditions for
protected polymorphism may be relaxed under combined action of these two
factors (Hendrick, 1978; Ewing, 1979).

Most of the results related to selection variation in time are for the one locus case
(e.g., Karlin and Levikson, 1974). However, it is reasonable to assume that new
conclusions may be obtained when considering two or more loci. For such a
formulation the haploid case is of special interest. Indeed, with haploid selection
there is no way to obtain a stable polymorphism due to any (hidden) form of
heterozygote advantage, no matter how this advantage is defined. Here we will
show that with haploid selection in a constant environment, and in a rather broad
range of fluctuating environments stable polymorphism can not be maintained.
However, a class of situations can be described where fluctuating selection can
maintain stable polymorphism.

Necessary conditions for polymorphism. General selection regime

The dynamics of infinite haploid panmictic populations will be considered with
selection acting on two diallelic autosomal loci. Generations are non-overlapping.
The evolutionary operator can be written in the following form:

xi=h(x,—rD)/W, x3=05L(x,+rD)/W,

(N
x3=hL(x;+rD)/W, xi=Il(xs—rD)/W,

which transforms the standard simplex X for the 4-dimensional space into itself.
Here x,, x,, x5, and x, are the frequencies of haplotypes AB, Ab, aB, and ab,
respectively,

W=1x+5Lx,+ Lx;+ ,x,+rDo,
D=xIX4—x2x3, a="l]+12+l3—l4.

Fitnesses /,, [, 5, I, are dependent on the environment. We will consider changing
environments with p different states (p > 1). If the states follow in a periodical
sequence we can speak of a cyclical environment. For the state with number i we
denote fitness coefficients as [;, I, 15, ;. Due to normalization of (1), the maximal
fitness in each environmental state is equal to unity.
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For a better understanding of the nature of possible polymorphisms in fluctation
environments, it is reasonable to first check the situation with a constant environ-
ment. The questions of; (a) existence, and (b) analytical form of stable states, have
been solved earlier for the case /;, =/, (Feldman, 1971). For the general case, the
following statement can be proved.

Proposition 1

For existence of an internal fixed point of the system (1), in constant environ-
ment, it is necessary and sufficient that one of these two groups of inequalities hold:

L, 0,> 15, r>(max(l, l,) —min(l,, [;))/max(/,, [,),
or (2)
L, >1l; r>(max(l,, ;) —min(l,, [,))/max({},, ) .
Only one internal fixed point could exist (if at all) with coordinates (X,, %,, X3, X4):
—hia s (LO(L)), X = — Ly pspa/(LS(L))

=L o pa[(LO(L)),  %y= —lopyptapi [(LO(L))
where u;, =1, — L,
L ={Q2—nl—hLE)+/[2- i~ L5)
— 4 = b= L+ 1)30)Y — YU - L — L+ 1)),
O(L) = —po s pha + py M3 e + fhy o g — Py o H3.

For proof see Appendix 1.

The Jackobian of the transformation (1) at the fixed point can be written in the
explicit form. However, its analytical treatment is cumbersome. Numerical exami-
nation showed that the characteristic polynomial of this Jacobian has, almost
always, a positive root which exceeds unity. The only exceptions are cases where the
parameters of the system obey some special conditions (equalities) and then the
spectral radius is equal to unity. Thus, in these cases polymorphism will be, as a
rule, unstable.

Generally, stable polymorphism is not an intrinsic characteristic of systems with
haploid selection. Therefore, polymorphism stability, if possible at all, should be a
phenomenon of some kind of variable selection (e.g., temporal fluctuations of
fitness coefficients, frequency dependent selection, etc.). On the other hand, global
stability of a set of polymorphic points (with the whole interior of the simplex being
the domain of attraction) is also an exception for environments with a finite number
of states. Under these conditions, as a rule, there exists a non-empty domain of
attraction of fixation points for each of the participant loci. The direction of
fixation depends on the integral fitnesses of haplotypes (as defined below) in all of
the environmental states.

It

X

(3)

X3
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Let us define the integral fitness of the haplotype j, in a periodic environment
with p states, as L, = I,;,; - - - 1,;, where p is the period length, and j =1, 2, 3, 4. If
the sequence of the states is not fixed within the period, the environment can be
called quasi-periodic.

Proposition 2

The equality max(L,, L,) =max(L,, L;) is a necessary condition for global
stability of polymorphisms in periodic and quasi-periodic environments. If
max(L,, L,) = max(L,, L;), then the vertex x,, = 1 of the simplex will be a point of
local attraction, if L,, = max(L,, L,, L;, L,). The second locally attracting vertex
will be x, =1, if

Ls = max({Lla L29 L3’ L4}\Lm) and (1 - r)pLs < Lm s (4)

where {L,, L,, Ly, L,}\L,, denotes the set {L,, L,, L;, L,} without the element L,,,
and haplotype s complementary to m. For proof see Appendix 2.

Therefore, global stability of polymorphisms is practically an exception, and
possible directions of fixation depend on integral fitnesses L,, and the recombina-
tion rate r between the selected loci. The condition max(L,, L,) = max(L,, L;)
corresponds to a small set of systems and is, formally speaking, very special.
Situations of this type are discussed in the literature (e.g., Sasaki and Iwasa, 1987,
for the haploid case, the Charlesworth, 1976, for the diploid case) and, therefore,
deserve further consideration.

As a simple example where the accomplishment of the necessary condition leads
to global stability, we will study the model of the haploid two locus population
considered in Sasaki and Iwasa (1987), where selection alternatively favours either
AB and ab, or Ab and aB haplotypes. In our analysis the length of the period is
p=2.

Proposition 3

For a system defined by the evolutionary operator (1) in a two-state envi-
ronment with [, =l,=1, I, =l3=C and lp,=l3=1, L1 =hLs=C, C>1 and
p =2, a polymorphic fixed point exists, and is globally stable. For proof see
Appendix 3.

Now we will formulate one important necessary condition for the existence of a
polymorphic fixed point. A trajectory of the dynamic system (1) will be referred to
as a regular one, if an environmental state (say, i) exists, such that for a finite time
the sign of the sequence ﬁﬁ(n) becomes stabilized. Here,

s=p—1
Dy=1, Y (L;/Q)DC*9, j=1,2,3,4; (5)
s=0
j is the haplotype number; L is the integral fitness; Lj =1 ;" " li.,;;

Q=W,W, - W, ,;and &' =Q. Index i + s is calculated modulo p, D’** is
linkage disequilibrium at the environmental state i +s, 1, =17,= —1, 1, =13=1
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The coefficient D, is a linear combination (with constant coefficients) of the
quantities D/Q over all their values within the cycle, and it depends on genotype
(j), and on the chosen starting point within the cycle (/). Thus, for each i (1,..., p)
we can define four sequences D,,(n) (j=1,...,4), where n is the period number.
Stabilization of the sign of D,,(n) means, that some n = n, exists and, that for any
n > n, sign (D,,(n)) = s1gn(D,,(n0)) A trajectory is regular if there exists at least one

state i, for which stabilization of sign D,, is possible for all j (j=1,...,4).
Let us consider a case where L; could be ranked in an increasing sequence
L/|>L.i2>L.i3>Li4' ) (6/)

This ordering induces a corresponding sequence of coefficients D,i:

b, D, D, D, (6")

Syl Fjals sl

For each regular trajectory of the system (1) we can say that the signs of ﬁ,, from
(6) become stabilized within a finite time. Further consideration concerns the
behavior of the system beginning from the moment of stabilization of the sequence
of signs. We will refer to the sequence (6”) as an increasing-for-sign if it does not
contain changes from plus to minus. In other words, the first m elements of (6”) are
non-positive and the subsequent 4-m are non-negative, 0 < m < 4. It should be
noted that when some values of integral fitnesses are equal, their mutual order can
be arbitrarily chosen, which leads to several possible sequences (6”). In particular,
when all fitnesses are equal we can choose such an order that the sequence (6) will
be an increasing-for-sign.

Proposition 4

Let all of the integral fitnesses be different. For convergence of any regular
trajectory to an interior point of the simplex. x, + x, + x; + x, = 1, it is necessary
that the corresponding sequence (6”) be an increasing-for-sign. For proof see
Appendix 4.

Remark

The case of non-equal fitnesses has been considered in Proposition 4. Clearly,
definition (6) of a regular sequence is formally irrelevant to the case when all of the
integral fitnesses are equal. Nevertheless, some elements of the above proof are also
applicable in this case, provided that the sequence sign(ﬁji(n)) becomes stabilized.
Namely, let a change in the sign be characteristic to the sequence (6”). Then, by a
consideration analogous to that in the proof of Proposition 4, the following result
could be obtained. Under the above conditions either the trajectory converges to
the set D =0 or at least one of the loci goes to fixation (this could be shown
employing a chain of inequalities analogous to that of 22A-24A).

As important examples of the described situtation we can consider ‘plus-concor-
dant’ (/,,ly; > bl i =1, ..., p) and ‘minus-concordant’ ([;;l,; < l;l;;,i=1,...,p)
environments (Kirzhner et al., 1993, 1994a). Environments of these types arise in
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schemes of stabilizing selection with moving optimum when the selected trait is
controlled by additively acting genes (Maynard Smith, 1988; Kirzhner et al,
1993, 1994a). Earlier we showed that the sign of linkage disequilibrium in such
environments becomes stabilized and equal for all environmental states (Kirzhner et
al., 1993, 1994a). According to (5), the sign of D in these cases also becomes
stablhzed Thus, each trajectory of the correspondmg system (1) in this special case
is regular. The signs of D,,, Dy, and D,,, D5, are opposite, and depend on plus- or
minus-concordance of the environment. Therefore, we conclude that each trajectory
in the sign-concordant environment is regular. However, it is worth mentioning
here, that in massive numerical experiments with this class we have not been able
to find a stable polymorphic situation. Due to this fact, Proposition 4 for the class
of sign-concordant environments should be reformulated as follows:

Corollary

If the environment is minus-concordant, i.e. [, [, < [,I;, then the full dominance
of integral fitnesses of haplotypes 2 and 3,

L2,L3>L1’L4 (7)

i§ necessary for existence of an interior fixed point (because in this case we have
DIj= D4i = 09 ﬁlis D}i 2 0)

For plus-concordant environments the direction of the inequality (7) should be
reversed. It is worthwhile to note, that condition (7) is an analogue of Proposition
1 for a constant environment.

For example, let the sign-concordant environmental selection be the result of an
optimum movement with a fitness function F( - ), so that,

Ijt=F(tj—ai)’ Lj=F(Ij"al)'.'F(tj—ap)’

where ¢, stands for the selected trait value of haplotype j, and q; is the optimum level
of t at the state i. If the selected trait 7 depends on two equal additive genes, then
the conditions (7) will be as follows:

Fity—a) - F(ty—a,)<F(t;—a)) - F(t,—a,),
Fts—ay) - Flts—a,) <F(t—a;) - F(t—a,) .

Clearly, these inequalities may be violated with some sets of a’s. If F = exp(—ou?),
then from (8) one can obtain:

pt? —2t,%a; + Ta? > pti - 21,%a, + Xa?,

(8

pti—2,3a; + Xa? > pti —2t,%a; + Za?.
For a selected trait increasing with the genotype number,
(h+1)2<(Za)/p <(2+1,)/2.

Therefore, the necessary condition for polymorphism is that the mean of the
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optimal values of the trait (over the environmental states) belongs to the interval
([t + 22)1/2, [12 + 14]/2).

The significance of the above obtained necessary conditions for existence of a
polymorphic fixed point in sign-concordant environments can be illustrated by the
fact that these conditions are indeed satisfied in the corresponding cases of constant
environments, as well as in cyclical environments with a long selection-free period
(Kirzhner et al., 1994b).

Selection for an additively controlled trait

Let us consider in more detail the case of selection for an additively controlled
trait. The trait values of the four haplotypes are as follows:

a A
b m m+d,
B m+dy m+d,+dg

Let d, = dy. Thus, fitness coefficients of 4b and aB are equal, Ix, = /«5. In the case
of a constant environment, this system has been investigated by Feldman (1971).
Consider first the case of a minus-concordant environment. Then, according to our
previous results (Kirzhner et al., 1993, 1994a), for any trajectory, starting from
some generation the linkage disequilibrium D will become negative. Thus, we can
study just this part of any trajectory. From (1) one can easily obtain:

X2 = X3 = lay (0, — Xx3) [ W.

Hence, the relations x, < x5, x, > x5, or x, = x; are reproducing along the trajec-
tory. Clearly, the first two cases are analogous, thus we consider only one of them,
and the case of equality.

Let x, < x5. Then, for each of the environmental states, the following inequality
holds:

X2/x5 = (X2 + rD)/(x3 + rD) < x/x;, (12)

the equality being possible only when D =0. Thus, either x,—+0 or D -0, or
simultaneously x, -0 and D — 0. However, it follows from (1) that, if x, >0 at
r =0, then D — 0 also. We can conclude that for each trajectory with x, = x; at the
beginning, the population converges to the set D = x,;x,— x,x; =0, which is,
therefore, invariant with respect to the evolutionary operator (1). On any element
of this set, and at any environmental state, the evolutionary operator gives
Ialaxix, = x5x5. Hence, x,x, = 0 and x,x; = 0, because of the condition of minus-
concordance, the inequality /;,/, # 1 holds at least for only one of the states. This
results in fixation for one or both loci. .

Now let x, = x,. This set is invariant for the evolutionary operation. Fixation on
this set goes, if at all, simultaneously at both loci. Indeed, let fixation be for locus
Ala, e.g. allele a is lost. Then, x; =0 and x, =0 and, therefore, x, = 0. Thus, only
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x, =1 could be stable from the subset of points belonging to the border set of the
simplex. It can be shown, that for local stability of the point x, =1 on the set
X, = X3, it is necessary that either,

L,2L,,L, or Ly<L, <L, L{(1—-rf<L, (13)

takes place. This condition will also be sufficient if non-rigorous inequalities are
replaced by rigorous ones. The last statement can be proved analogously with
Proposition 2. Indeed, provided x, = x;, the evolutionary operator can be written
as

xy=1(x; —rD)|W, x3=DhL(x;+ D)W, xi=I(x,—rD)/W.

From the normalization condition x; + 2x, + x, = 1, we have x, = (1 — x; — x,)/2,
so that it is sufficient to consider the evolutionary operator in the two-dimensional
space (x;, x,). Clearly, vertex x; =1 is a fixed point for all environmental states.
For any state i, the Jacobian J; at this point can be represented as

by [h; Jin
0 l;(1 =1/l ’

where the concrete value of the element J,, is not important for our analysis. The
Jacobian J of the product of the evolutionary operators along the period is
J=J,---J,. Consequently, the eigenvalue of J is the product of the eigenvalues of
Jacobians taken over the states. Therefore, we have the conditions

Ly byl h,=L/L <1,
Ly L,(V=n)Plly - L, = Ly(1 = 1)?/Ly <1,

from which (13) immediately follows. .

In the same manner one can show the stability of the point x, =1 is within the
set x, = x3. We should recall that for minus-concordant environments the inequality
L,L,— L,L, <0 is true. Therefore, in minus-concordant environments, for cases of
selection for additively acting genes with equal effects, only two types of inequalities
are possible, either L,, L, < L, or L, < L, < L,. Clearly, mutual replacement of L,
and L, results iri an essentially equivalent situation.

Let L,, L, <L, and, as before, x, = x;. Then, according to (13), both points
x, =1 and x, = 1 will be repelling and no alleles will lost along the trajectory. The
limiting behavior of the trajectories remains, in general unclear, while the analytical
results for the particular case of a constant environment (Feldman, 1971), and our
numerical experiments for cyclically changing environments, show that all the
trajectories starting from this set converge to one fixed polymorphic point.

Now let L, < L, < L,, which is compatible, as before, with the conditions of
minus-concordance, and with selection for additive genes with equal effects. Then,
according to the previous analysis for the case x, = x5, the point x, =1 is locally
attracting. Numerical experients enable the assumption that x, = 1 is also globally
stable. We can now formulate two statements concerning population behavior
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under cyclical selection for a trait controlled by two equal additive genes in
sign-concordant environments.

Proposition 5a

The trajectory of the population in minus-concordant environments with an
initial state x, # x, converges to the set x,x, =0 and x,x; =0, losing, therefore, at
least one allele. With the initial point x, = x5, polymorphism is maintained if
Ly>L,=Ly,L,or Ly=L,<L,<L,and L,(1 —r)? < L,.

For plus-concordant environments an analogous statement can be formulated.

Proposition 5b

The population trajectory in plus-concordant environments converges to the set
X, = x,;. In this case, either a lost of polymorphism at both loci (x;=x3=0=
x; = 1 or x, = 1) or convergence to a polymorphic state (if the last one exists) in the
set x, = x5 is possible.

Proof of this Proposition is similar the previous one. Thus, only specific points
characteristic to the considered situation should be mentioned here. According to
our previous results (Kirzhner et al., 1993, 1994a), in plus-concordant environments
with any trajectory, starting from some generation linkage disequilibrium D, will
become positive. Thus, we can study just this part of any trajectory. In this case, the
sign of the inequality (12) will be opposite, which means a growth of the ratio x,/x,
along the trajectory. This growth continues as long as x,#x; or D #0. The
assumption of D = 0 along the trajectory leads to the condition x, = x; = 0, because
L,L,— L,Ly>0 in plus-concordant environments. If D 0, then x, —x; -0, so
that in all cases the trajectory converges to the diagonal.

Now consider the diagonal x, = x; which is an invariant set of the operator (1)
(for the case of equal gene effects). It is worth mentioning that in a plus-concordant
environment the inequality max(L,, L,) > L, = L, occurs. It follows from the Proof
of Proposition 2, that at least one of the points x; =1 or x,=1 is locally stable
provided that max(L,, L,) > L, = L,. It is clear, that if both points, x, =1 and
x,=1, are locally stable, then an interior saddle point should exist. In our
numerical experiments all of the trajectories have converged to one of the border
points of the simplex (i.e. we have here the case x, = x; =0).

In the case of zero-concordant environments, the sign of linkage disequilibrium D
depends on the initial state of the trajectory (Kirzhner et al., 1993, 1994a). It has
been shown above, that the limiting behavior of a trajectory depends on the sign of
D along the trajectory. Thus, the behavior of any trajectory in zero-concordant
environments should follows that of a plus- or minus-concordant environment.

Therefore, haploid selection for an additively formed trait in sign-concordant
environments is unable to maintain polymorphism, with the exception of the set
x, = x5 but, the mode of allele loss depends on the “sign” of the environment. In
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the case of a minus-concordant environment only one of the two loci may become
monomorphic, whilé in plus-concordant environments both loci go to fixation.

The difference between these two types of limiting behavior can be better
iltustrated in the following terms. Consider a sign-concordant environment with an
infinite set of states. The environment could be referred to as a controlled one if the
sequence of the states follows any predetermined rule. Then, for any rule, if the
environment is minus-concordant, the population loses some alleles. This result can
be easily obtained by analogy with the case of a cyclical environment. However, if
the environment is plus-concordant, then polymorphism maintenance is possible.
Indeed, if for some state the inequalities /, > I,, 5, [, hold, then the point x, =1 is
attracting. If in some other state I, >/, /,,/;, then the point x,=1 will be
attracting. It is clear, that by a suitable alternation of these two states one can
protect polymorphism for an unlimited time. The situation considered above with
a regulated environment could appear in a program of pest population control
using two pesticides (e.g. Mani, 1985).

In conclusion, we note that the above results allow exclusion of situations where
haploid two-locus selection caused by temporal fluctuations in the environment are
unable to maintain polymorphism. On the other hand, the disturbance of the
sign-concordance property is very promising in terms of polymorphism mainte-
nance. Polymorphism may be expected in situations where “the amounts of
selection” in plus- and minus-concordant states are more or less balanced within the
period. The simplest example of such types of environmental changes is a two-state
cyclical environment where in half of the period selection favours 4B and ab
haplotypes and in the other half 4b and aB are selected for, the intensity of
selection being equal in both states (e.g., Sasaki and Iwasa, 1987). In this example,
polymorphism exists and is even globally stable (see also Proposition 3). Further
analysis of the effect of alternating plus- and minus-concordant environments has
been done numerically.

Computer simulations
The experimental design

The above analysis showed that polymorphism maintenance due to haploid
selection in fluctuating environment, if possible at all, could be expected only in
sign-nonconcordant environments. These expectations were tested based on massive
numerical experiments. For each of the considered class of systems the following
approach was employed in order to analyze the effect of the key parameters on
polymorphism:

(i) The first step was to define the class of systems to be studied, including
parameters characterizing the mode of the changes in enviornmental states, and the
fitness coefficients (see below).

(ii) Generating random or deterministic samples of systems of the defined class.
Uniformly distributed parameter values were used for each of the permissible sets.
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(iii) For each of the parameter combinations, the volume of the set of initial
points resulting in polymorphic trajectories was calculated using uniformly dis-
tributed random starting points.

Results

Three types of systems were studied using this methodology: (1) a relatively
general case of cyclical selection with a four-state environment; (2) the simplest
system with two-state, sign-nonconcordant environment and; (3) a special case of
selection in a three-state cyclical environment favouring consequently genotypes 4B
then A4b and aB, and finally ab.

Cyclical selection with a four-state environment )

Let the cycle be of the following structure: C = (S;¢,, Syt5, S3t3, S,1,), where
S; = {811 5215 S3:» 54; } 15 @ set of selection coefficients of the considered genotypes and
t; is the number of consecutive generations in the ith environment. The chosen
condition, that the selection regime is the same in the 2nd and 4th states within the
period, allows analysis of several groups of situations previously considered in the
literature, and which have simple interpretations. Thus, we studied situations with
increased ¢, and ¢, given fixed #,, and increased ¢, given fixed ¢, and ¢;. For each of
these cases the size of a random sample from the space S, x S, x S; x r was 300,000
(recall that r is recombination rate between the selected loci). The range of
uniformity distributed selection coefficients in our Monte-Carlo simulations was
[0, 1], and that of r €[0,0.5]. Each sample was iterated numerically from 100
random initial points in order to estimate the size of any stable polymorphism
attracting domains.

The above analysis (see Sections 1 and 2) indicates that sign-concordant environ-
ments are unfavorable from the point of view of polymorphism maintenance. This
assumption was tested numerically for the considered class of four-state environ-
ments. In the parametric space 25% of the systems correspond to sign-concordant
situations. For them, we could expect fixation in, at least, one of the loci. In fact,
in all cases of sign-concordant environment such a fixation was observed. For this
reason, all subsequent comparisons were made with the sign-nonconcordant class
(225,000 systems for each type of environment).

The selection regime will be referred to as one of the Sturtevant-Mather’s type
(SM-type) if the linkage disequilibria of the favoured haplotypes (say, 4b and aB),
in the states S| and S;, are of the same sign and opposite to those in S, (4B and
ab) (Sturtevant and Mather, 1938). The situation when haplotype 4B is favoured in
S,, both 4b and aBin S,, and ab in S;, will be referred to as selection with moving
optimum (or moving selection, MS-type), if the following ordering for the fitnesses
holds: AB > Ab,aB >abin S,; Ab,aB > AB,ab in S,; ab > Ab,aB > AB in §,. It
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is clear, that these two modes of classifications, being applied simultaneously, will
give us four classes of systems: SM&MS, SM&MS, SM&MS and SM&MS.

Two series of variation of the period structure were considered, starting from the
situation with equal longitudes (¢, = 2) of the four environmental states. In the first
series, we consequently extended the proportion of longitudes ¢, and ¢, with
identical selection regime (thereby making the environment more stable), while in
the second series the longitudes of states with unequal selection regimes (¢, and ;)
are extended. In other words, for any period length, the diversity of “environmental
challenges” to the genetic pool in the second series is higher than in the first one.
Table 1 shows the proportion of polymorphic cases among each of the four types
of selection regimes (SM&MS, SM&MS, SM&MS, andSM&MS), and along all
systems. As expected, polymorphic systems are more frequent in the second series.

As mentioned above, the simulated systems were cross-classified according to two
types of selection. It can be seen from the results presented in Table 1 that moving
selection is the most effective for polymorphism maintenance in more diverse
environments (second series). Namely, within this type of system, the proportion of
polymorphic cases is much higher than in the whole set. In the first series, where the
environment is more stable, the proportion of polymorphic cases follows the
average observed in the whole set.

The distribution of the recombination rates for the systems which where poly-
morphic is presented in Fig. 1. For the first series a tendency to a bimodality in

Table 1. Proportion of polymorphic cases among four classes of cyclical selection regimes as a function
of the period structure.

Environment Proportion of polymorphic regimes (%)

Among Within the type
all . - -
systems SM&MS SM&MS SM&MS SM&MS
Series 1
2 2 2 2 0.33 0.36 0.18 0.19 0.87
2 4 2 4 0.28 0.28 0.18 0.25 0.00
2 6 2 6 0.19 0.18 0.00 0.23 0.00
2 8 2 8 0.14 0.13 0.00 0.19 0.00
2 12 2 12 0.07 0.07 0.00 0.07 0.00
Series 2
2 2 2 2 0.33 0.36 0.18 0.19 0.87
4 2 4 2 1.05 1.18 1.83 0.38 0.00
6 2 6 2 1.42 1.63 2.74 0.35 0.00
8§ 2 8 2 1.45 1.69 2.74 0.26 0.00
12 2 12 2 1.16 1.35 1.83 0.16 0.00
The values t; (( = 1, . . ., 4) stand for the number of generations in the ith environmental state within the

period. SM and MS denote selection regimes of the Sturtevant-Mather and moving optimum types,
respectively. The upper lines marks the absence of the respective property. The two series of experiments
correspond to a consequent elongation of a certain part of the cycle.
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Fig. 1. The distribution of the recombination rate (r) in haploid two locus systems where cyclical
selection results in stable polymorphism as a function of the period structure. The values ¢, (i =1, ...,4)
stand for the number of generations in the ith environmental state within the period. The mean value
of r is marked by arrows on the axis r.

distribution could be seen with increased period length, the mean value of r
decreased from 0.35 to 0.30. In the second series the distribution is unimodal with

mean r decreasing from 0.35 to 0.22.

A system with two-state sign-nonconcordant environments

A two-state environment with fitness coefficients of genotypes 4B, Ab, aB, and ab
being 1, ¢,, g5, 1 in the first state and ¢,, 1, 1, ¢; in the second one (g,, g; < 1) was
studied. Here, the coefficient of integral fitness disequilibrium is zero and the system
is close to the model considered by Sasaki and Iwasa (1987). If ¢, =g, then,
according to Proposition 3, the system has a globally stable polymorphism (see also
Appendix A from Sasaki and Iwasa, 1987). It is reasonable to assume that the system
is structurally stable, i.c. small deviations from the above conditions will not disturb
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Fig. 2. Dependence of the size of the selection parameter domain corresponding to polymorphism
maintenance by seasonal (alternating) changes in fitness coefficients: (1, g5, g5, 1) in one season, and
(42, 1, 1, ¢5) in the other, for haplotypes AB, Ab, aB, and ab, respectively. Domain 4 corresponds to
recombination r = 0.3, while the broader domain B corresponds to r =0.5.

the stability (at least not the local one). Our numerical studies are an attempt to
estimate how large these deviations could be at different recombination values (r).
We found that. for each r the set of polymorphic systems corresponds in the space
of parameters ¢, x ¢; to some domain which is symmetric with respect to the
diagonal g, = gq,. Figure 2 shows the results obtained for r = 0.3 (domain A) and
r =0.5 (domain B) for selection coefficients in the range 0.02—0.30. It is clear, that
with increasing selection intensity or recombination rate the level of asymmetry
compatible with polymorphism is also increasing.

Moving selection in a three-state environment (favoring genotypes AB; Ab and aB;
and ab).

This class of situations could be considered as a special case of moving selection.
The selection regime was defined by the formula (S,1,, S,t,, S5t;), where
S =(1,949), S:=(@,1,1,9), S3=(4, 9, 4, 1), g < 1. For the results presented in
Fig. 3 the following structure of the period was used: ¢, = t; = 3, ¢, = 6. It can easily
be seen that with relaxed selection the size of the polymorphism attracting domain
(v) is decreasing. The effect of recombination is non-linear: for every value of ¢
(from some range ¢, < ¢ < g,) a pair of recombination rates r,, r, can be found
such that polymorphism is absent outside the interval r, <r <r, (v =0) while
within the interval 0 <v < 1. For the chosen ¢,, t,, and #;, we estimated that
¢, ~0.3 and g, ~0.56. It is clear that if selection is too weak, (g >¢,) polymor-
phism is impossible at any recombination rate. With strong enough selection
(g < q,) polymorphism is globally stable at any recombination rate. It is notewor-
thy that, selection intensity in nature is usually much weaker, but strong selection
can not be considered as an exclusion (Ford, 1971).
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Fig. 3. The dependence of the volume (v) of the interior attracting set on selection intensity (¢) and
recombination rate (r) in a three-state cyclic environment. The sets of fitness coefficients of the four
haplotypes are (¢, ¢, 4. 1), (g, 1, 1, q), and (1, ¢, g, g¢) (0 < g < 1), for the states 1, 2, and 3, respectively.
If most of the trajectories are converging to the interior of the symplex, then v is close to unity. If most
of the trajectories go to the border set, than v is close to zero. The Figure represents the results of
estimation of v based on 500 random runs for each combination of the parameters.

Discussion

Haploid selection models are of special interest in evaluating putative factors
promoting polymorphism in nature. This is due to the fact that these can be
considered as pure models without any hidden form of heterozygote advantage.
Fluctuating environment may, in principle, maintain polymorphism due to diploid
selection as well (Haldane and Jayakar, 1963; Hedrick, 1986; Korol et al., 1993,
1994; but see Lande, 1976). However, to better understand the effect of interactions
between recombination and fluctuating selection on polymorphism, haploid models
are preferable because they are simpler and independent of heterosis for fitness. It
is worthwhile to recall that cyclical haploid selection in the one-locus case can
produce only neutral polymorphism (Nagylaki, 1975; Hendrick, 1978).

In addition to the problem of polymorphism maintenance, analysis of fluctuating
haploid selection could be of interest for studies in other fields, for example
recombination evolution (e.g. Sasaki & Iwasa, 1987) and evolution of life cycles
(haploidy-diploidy). The last problem has been considered in terms of selection
against harmful mutations (Kondrashov and Crow, 1991; Perrot et al., 1991), the
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selection in constant environments (Jenkins, 1993). However, fluctuating selection,
acting simultaneously at the haploid and diploid level, could also play an important
role in the evolution of the life cycle (Nevo et al., in preparation).

In the first part of this paper we have studied some general conditions for
polymorphism stability in haploid, two-locus cyclical selection models. As a basic
system we also considered general haploid selection in constant environments. For
the latter case we showed that no more than one fixed polymorphic point could
exist; a criterion for the existence of such a point was obtained, and the coordinates
of the fixed point were found. Based on numerical analysis of the spectrum of linear
approximation, it can be shown that a real eigenvalue exceeding unity always exists
(with exception of special neutral cases, e.g. when all selection coefficients are equal
to each other).

Therefore, it is clear, that polymorphism stability in temporarily changing
environments (if it exists at all) is precisely the result of environmental variation, i.e.
it can not be a “relic” of selection in a constant environment. However, in haploid
systems with non-overlapping generations, polymorphism produced by changing
environments can be globally stable. Indeed, according to Proposition 2, the
necessary conditions for global stability are equalities. These conditions hold for the
haploid model of selection regime of Sturtevant-Mather’s type (for example, Sasaki
and Iwasa, 1987). These conditions can also be sufficient, as shown in our
Proposition 3. Proposition 2 practically precludes the existence of global stability of
polymorphism. However, the internal stable equilibrium point is, to some extent,
structurally stable (see Iwasa and Sasaki, 1987, and our simulation results in
Section 3.2).

It was shown that in models with variable selection, the fitness functions usually
used in the literature lead to a class of environmental changes which could be
named as sign-concordant (Kirzhner et al., 1993, 1994a). For this class, the above
considered necessary conditions for existence of a fixed point (Proposition 4) are
close to analogous conditions for the case of a constant environment (which, in this
situation, are also sufficient ones).

Consider a situation, where sign-concordant environmental selection occurs for a
trait controlled by two additive genes with equal effects. In the case of minus-con-
cordant environments we found no polymorphism for most of the trajectories. The
only exceptions are the trajectories starting (and remaining) in the diagonal x, = x;
(note also that the diagonal is a repeller for the trajectories starting outside of it).
For plus-concordant environments, the diagonal x, = x; is an attracting set. How-
ever, numerical analysis shows that the system goes to fixation along the diagonal.

Therefore, we conclude, that the phase space of the population in fluctuating
sign-concordant environments looks like that of constant selection. Even if it has a
fixed point, this point is unstable. This conclusion was confirmed in our massive
numerical experiments. Polymorphism, if possible at all, can be found in sign
non-concordant environments where the effects of states with opposite signs are
“balanced”” within the environmental cycle.

Theoretical considerations in the first part of paper help to exclude the class of
situations where stable polymorphism is impossible. Thus, we had to check, if
polymorphism could exist in the remainder, presumably more perspective, class of
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systems (with sign non-concordant environments). This was done by numerical
modelling. The results presented in the second part of the paper are concerned with
polymorphism maintenance in two special cases, and one more general situation. The
last one includes, among other regimes, selection with moving optimum and selection
of the Sturtevant-Mather type. Polymorphism was found in all four types of the
considered selection regimes, but the proportion of polymorphic systems depends on
how the opposite selection tendencies are balanced within the period. In the special
case of “non-Sturtevant-Mather, but moving selection” type, the proportion of
polymorphic regimes is much higher than in the general case.

An important role of the recombination rate in polymorphism maintenance should
be stressed. The distribution of the recombination rate among the systems which
occurred to be polymorphic depends on the period structure and length: the less
variable are the environmental conditions (e.g. due to increased period length) the
lower is the recombination rate compatible with polymorphism.

In case (2) of two-state environment, with selection of Sturtevant-Mather type,
recombination level is also critical for polymorphism maintenance: the higher r, the
larger the size of the polymorphism attracting domain (see Fig. 2). Recall, that
symmetric versions of this haploid selection regime were also considered earlier by
Sasaki and Iwasa (1987).

In case (3) of moving selection we also have an appreciable proportion of
polymorphic systems. And here again, the existence of polymorphism depends on r:
for every level of selection intensity a pair of recombination values r,, r, can be found
such that polymorphism is possible only within the interval r, <r <r,.

Strong dependence of the behavior of two- or multilocus systems on recombination
has been found in different studies. Thus, Lewontin (1974) established for symmetric
viability diploid selection (in constant environment) the existence of a critical value
r = r* such that for r > r* the population reaches asymptotically linkage equilibrium
D, =0 while for r <r* D #0. Moreover, Ewens (1968) found that for some
selection regimes the range of r values (0 < r < 0.5) is even non-continuous and could
include more than one subinterval corresponding to D # 0 (Ewens, 1968).

These facts, as well as many other models showing the qualitative importance of
recombination in the two locus system behavior are, to an extent, in contrast with
some multilocus models assuming weak selection (e.g., Lande, 1976). Lande (1976)
showed that weak diploid selection with a fluctuating optimum does not help in
maintenance of polymorphism for additive genes. Our findings could be considered
as complementary to these results. We demonstrated that with strong enough selec-
tion and some restrictions on recombination, fluctuating selection can result in stable
polymorphism with a quite large volume of the polymorphism attracting domain.
This result also hold in the case of diploid selection (Korol et al., 1993, 1994).
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Appendix 1

Proof of Proposition 1. Let us consider the process of transition from one
generation to the next as the successive action of two operators — (a) random mating
followed by crossing over, and (b) selection; as described by the following transfor-
mation:

# =% —rD, F,=%,—rD, F=%+rD, F=Ry+rD, (a)
=4L%x/L, x,=LX%JL, xy=L%/L, X,=0L%/L, (b)

where, L =1, X, + LX, + LX; + [, %,.
At the initial state the population is characterized by a vector X, which is
transformed by the above two operators, (a) and (b), into X and %, consequently.
It is clear, that operator (a) does not change allele frequencies. Therefore, for
stability of a polymorphic point it is necessary that the selection operator (b) does
not change allele frequencies at this point.

Lemma Al
The set of population states with unchanged allele frequencies after the selection

operator has the form,
Xy = — Mo sfia/O(L), Xp = pypspa/O(L), (1A)
X3 = py o fia/O(L), X4= —pypapts /(L) ,

where,
(L) = —popisfha + i s s + i fo s — oy, W =1L — L,

if one of the following alternative inequalities holds:

L, L=2L=5L,l; or I,,L,<L<,1.

Proof
The population state ¥ = (X,, X,, ¥;, X,) with unchanged allele frequencies after
the selection operator action, should obey the equations,
ll'il +lz.i2=L(£1+x~2), 11551+l3)?3=L()7?1+)?3),
L, + L Ry=L(Z + %), L+ L Xy= L& +Xx,),
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or, (2A)
WX X =0, pu X +px;=0,
PoXo+ s Xs =0, p3X;+ pa%y=0,
where u; =, — L. It follows from (2A), that each of the products u, u,, u; 3, fs s,
and p,pu, should be negative, assuming that all of the haplotype frequencies are
positive. Because of symmetry, it is enough to consider the case when /, has the
largest fitness. It is clear that in this case u, > 0, so that u, <0, which also leads to
14 > 0 and therefore, u; < 0. Thus, if /; is the largest among selection coefficients,
then, 2, 2L =1,1,.

Using similar considerations we can easily obtain the necessary conditions for the
existence of a positive solution to the system (2A) for a general case given either of
the two following conditions: /,,, =L 21,,, or I,,I, < L <1,,1,. Note, that the
system (2A) is degenerated and the last equation of (2A) may be replaced by the
normalization condition in the simplex, i.e.:

WX+ X =0, wx;+psx3=0, prx;+ paxs=0,

X+ Fxg=1. (3A)
The solution of this system is,

Xy = —popatha/O(L), Xy = pipspa/O(L),

X3 = W iola/O(L), Xq= —pyppps/0(L),
where,

L) = —papspta + i s ia + o fha — i Mo is, =1 — L. (4A)
The solution depends on the parameter L, and the value L is a function of variables
x:
L=L%+Lx+Lx+LE,.
Indeed, it follows from (4A) that
L=—(,— L+ L)ypopspa/d(L) + (l— L + Ly p3 pa /(L)
+ (I + L+ Dy popigJO(L) — (ly — L + Ly popi3/0(L)

Therefore, (4A) determines a one-parametric set (a curve) in the space of
population states, each point of which is transformed by the selection operator
without changing allele frequencies.

The solution 4A is valid only if 6(L) = 0. Clearly, 6(L) is a polynomial of the
third degree of L. Without loss of generality, we assume, that /, 2/, >/, 2 [;. The
last ordering correspondings to Lemma Al and because of symmetry it may be
considered as a general one. It is easy to see that (/,), 6(/;) = 0, 6(/,), 6(,;) < 0. By
taking into account the ordering of /, one can check that nowhere within the
interval (l, 1,), is 8(L) zero. Thus, (4A) is always valid. The population states
defined in accordance to Lemma Al satisfy the necessary conditions for an internal
fixed point. In order to get the sufficient conditions, let us now apply the mating
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and selection operators to the same states. Then,
1= —hpuspg [(LS(L)), 722 = b pspa [(LO(L)) ,
Xy = Lo pa(LO(L)), K= —lypi o pis/(LO(L)),

L =(—Lipopspa+ L pspha + oy o g — gy o i3 /0(L)
and

X1 = =L /(LO(L)) —rD, %, = Ly pspia/(LS(L)) +rD ,
Xy =L o us/(L(L)) +rD, X4= —lypppuis/(LS(L)) — 1D, (54)
D = py po ps pra(ly la o pis — Ll py 1) [(LO(L))?

If the considered point is a fixed one, then the value % is determined by the relations
in (4A), so that from (4A) and (5A) we obtain,

— Mo papha/O(L) = =l pop3 pa [(LO(L)) — 1D,
P s pa/O(L) = Ly pspg [(LO(L)) + D,
th o pha/O(L) = Ly pp pg [(LS(L)) + 1D,

— Wttty [O(L) = — Lyt o p3 /(LO(L)) — 1D .
Each of the last four relations can be transformed into the following equation for
L:

o ps pa[LO(L) + r(ly Lapapts — Blspy pg)] = 0 (6A)

The solutions of (6A) from the interval determined by the inequalities of Lemma
A1 give the fixed values for the dynamic system (1). It has been assumed earlier that
Ly 21,21,z However, it is clear that this assumption does not effect the
generality of our consideration. According to Lemma Al it is necessary to find the
roots of (6A) in the range /, < L < ,. However, the values L =/,, [, are irrelevant
because these solutions correspond, in accordance with (A1), to fixed states with no
polymorphism. Thus, we should find the roots of the polynomial

P(L)y = Lo(L) + r(li Lypaps — Lilspipg) =0 (7A)
For analysis it is convenient to transform P(L) to the form,
Lhigpops — Lbspypg =L 1,0, — LYl — L) — LI, — LY(, — L)
= LIL(, 1, — L1I5) —6(0)],
SL)y=L¥l, — L — L+ 1) — 2L 1, — L) + §(0),
00y = -LLIL+ LI, + 1L, - 1LLIL.
Then, from (7A) we obtain,

P(L) = L{L*(h =L =L+ L) + 6001 — 1) = (2 =)Ly — b))} =0.
(8A)
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Therefore, polynomial P(L) has the root L =0 as well as others. Using (7A) we
note

Pl) = =L — L) — L) — L) + r(h L — L)1)
P(h) = L(h — b)Y — LY — ) + (=LA (L — L)L),
Pl) = Lth — L) — L) — B) + (= LL3 — L)L),
Ply) = —1(h = 1) — LY — L) + r(h L, — L)1) -

Atr =0 P(l,) >0, P(/;) <0 and P(l,) <0, P(l;) >0, so that the non-zero roots are
in the intervals (/;, /,) and (,, /;), but outside of the demanded interval , < L <|,.
An increase in r does not affect the sign of P(J,), but it may change the sign of P(l,),
resulting in appearance of the root in the interval (I,, /). The second root should
always be in the interval (,, —o0), because in this interval the sign of the
polynomial P(L) is changed from — to +. Therefore, we can consider the following
inequality as a criterion for existence of a suitable root:

Pl)y=—-1,(h —I)L—1)L—-L)+r( (L — 1), — 1) >0
or,
—(L-0L)+r)>0,
so that r > (J;, —,)/I,. Using (8A) we can find a corresponding root L:
L={Q2=nlL—hLb) +/(2- Nl - LE)?
=4l — L= L+ L)0)1 =)} — b=+ 1)) (9A)

These calculations together with Lemma A1 prove Proposition 1.

Appendix 2
Proof of Proposition 2

We shall consider Jacobian J of system (1) in the vertex x, =1 of simplex X,
assuming variables x,, x,, x, are independent and x;=1-—x, — x, — x,:

L, * *
0 4/ * , (10A)
0 0 (1=nL/,

where the asterisk stays for some elements of Jacobian. It is clear, to a first
approximation, that the vertex x; =1 of the simplex is stable if either /, is the
largest fitness (/, > 1, I3, 1), or [, 2 [, > I, ; and simultaneously (1 —r)l, /I, < 1.
Let population evolution occur in an environment with p states, alternating in
any order within a period of the length p (the order not necessarily being the same
across periods). Then, at the end of a period the linear approximation at the vertex
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x;=1 of simplex £ is a product of approximations of the form (10A):
J=JJ, - J, Hence, the values,
Lol oo Lyl Ly =L,/L,,
12672 b2/l Pl 2/Ly (11A)
Lishyy - lp}/llllll e lpl = L4/L,

and ’
(M —=rPliglyy - lp4/111121 T lpl =(1-r)L,/L,

are eigenvalues of the Jacobian J. Then, the form of the spectrum of linear
approximation and the above inequalities give proof for Proposition 2.

Appendix 3
Proof of Proposition 3

According to (1), the evolutionary equations connecting two consecutive periods
can be written as

x| =L,x,/WW ~ LD’ |WW —1,,rD|W,
x4 =Lyxy/W'W + LyrD’'|W'W + 1,,rDW ,
X4 = Lyxy /W' W + LytD'|W'W + 155D | W,
x4 = Lyxy/WW — LytD’|W'W — I,,rD|W .

The variables characterizing the “omitted” generation are marked by stroke. It
follows from (12A) that

1=C/W’W+(_l”+112+113—114)rD/W. (13A)

It is worth noting that 6 =0 and, according to Kirzhner et al. (1993, 1994a), along
any trajectory sign(D) acquires an invariable sign for a finite number of steps, i.e.
plus in one environmental state and minus in the other. More specifically, a positive
sign of D is found when /;; =/, =1, and /;, = /;; = C, and a negative sign for D in
the alternative state,

Consider a trajectory after sign stabilization. Let us assume, that we began with
a state where D > 0. Then, from (13A) it follows 1 = C/W'W + (2C — 2)D/W, so
that C/W'W < 1. The last inequality is strict if D = 0. We also assume that in the
initial state x, = x, and x, > x,. It is easy to see that these relations along the
trajectory do not change. The last fact follows from (12A). Namely,

0<x)—x)=06,—X)C/W'W, 0<x|—xi=(x—x)C/WW.

Therefore, the consecutive values of x, — x;, as well as x, — x,, decrease along the
trajectory (across periods). If in the initial state none of x; is zero, then

(12A)

0<x,—xy<qg <, 0L5x,—x,<q,<1, g +¢g,<1 (14A)

and these inequalities will remain along the trajectory. It follows from this, that
extinction of alleles is impossible. Indeed, fixation at both loci (i.e. either x, =1 or
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x,=1) contradicts to the inequalities (14A). If only one allele is lost, then
x;=x,=0 and x, + x, =1, which also contradicts (14A).

It is easy to show that if there is no extinction of alleles, the surface D =0 is not
invariant for the operator (1). Indeed, for some generations let D = 0. According to
(12A), D" can be presented in the form

D" = c*[(x, — rD')(xs —rD’) — (X, + rD')(x; + rD)| /WW’ ,
so that,
D" =)D —rD||WW' =c[—rD']/WW’, (15A)

because D =0. Therefore, if D” =0, then D’ should also be zero. However, for
C > 1 and x; >0, the variables D’ = C?x,x, — x,x; and D = x,x, — X,X; can not be
equal to zero simultaneously. Thus, if D =0, then D" #0. Now consider an
arbitrary trajectory and the set of the limiting states of the population. The
differences x; — x, (as well as x, — x3) will be equal for all elements of this limiting
set, because they are not increasing along the trajectory. On the other hand, because
of the above connection between D and D", at least one state with D # 0 should
exist in this limiting set. At this state, 1 > C/WW’ and therefore, the differences
x; — x4 and x, — x; should decrease (if they were non-zero). This means the
convergence of the trajectory to the diagonal x;, = x,, x, = x5.
On this diagonal, the evolutionary transformation reduces to

xi=(x,—rD)/W, x3=C(x,+rD)/W,

X} = C(x} = rD)[W', x5 = (x4 + rD) W',
where the values W and W’ are calculated from the normalization condition;
x;+ x,=0.5 and, hence, D = x? — x2=0.5(x; — x,). From this operator it is easy

to move on to the one-dimension problem: assuming that x,/x, =« we obtain for
both of the environmental states a homographic transformation,

w =(1/C)F(u), u"=CFu’), (16A)

where F=({(2—r)u+r)/({(ru + (2 —r)). For u 20, the derivative of F, dF/du =
41 —r)/(ru + (2—~r))? is positive (recall that r <0.5). It is easy to show that
dFjdu <1 and dF/du =1 only if u =0 and r =0. Clearly, the derivative of the
superposition u” = CF(u’) = CF((1/C)F(u)) (from (16A)) does not exceed unity.
Therefore, the transformation of the population genetic structure during an envi-
ronmental cycle is defined by a compression evolutionary operator in one-dimen-
sional space. Consequently, any trajectory from the diagonal set converges to one
stable point (which will be referred to as X* = (X, X3, X, X3)).

Remark
The final part of proof is easy to extend to a more general situation. If, for the

operator (1), with p >2 the diagonal x, =x,, x,=x, is invariant, then in this
invariant set stable polymorphism always exists.



Polymorphism caused by cyclical haploid selection 117

Therefore, we proved that population trajectories starting outside the diagonal
converge monotonically to the diagonal, while the trajectories starting at the
diagonal converge to a unique stable point X*. One could assume that trajectories
starting from any arbitrary point will converge to X*. Let us prove this statement.
To do that it will be enough to consider the fate of a trajectory which starts in the
vicinity of the diagonal.

Let x, = x,+ 14 and x, = x; + 15, where 7, and 1, are small. Due to the condi-
tions x, = x, and x, = x, accepted at the beginning of the consideration, the
variables are non-negative. Clearly,

X3+ x,=0.5(1 — 1, —13),
S0 that,
D =x;x,— X3X3=0.50¢4 — x3)(1 — T4 — T3) + T4 X4 — T2 X3
=0.5(x4—x3) + 1,

where 7 is a small variable of the same order as z; and 7,. Let as now show the
following. With a possible exception of the initial point, the trajectory started
anywhere in the vicinity of the diagonal will enter by one step and remain in some
domain M separated from zero. Indeed, according to the evolutionary equations,
for any of the environmental states,

x5 =(x3+ rD)/W = (x3+ 0.5r(x4 — x;3) + 1}/ W
=((2—rx;+rx,+1r)2W,
x3=C(x4—rD)/W = C(x, — 0.5¢(x4 — Xx3) + 1) | W
=C(2—r)xg+rx;+ ) 2W.
Assuming that r > 7, we obtain, with a precision of O(),
x5>0.5(1 -1, —13)C min((2 —r), r)/2(1 + C),
x3>0.5(1 —1,—13)C min((2—r), r)/2(1 + C),

because, W < 2(1+ C).

Analogously, we can get estimates of x; and x, for the alternative environmental
state. Thus, we can conclude, that all of the trajectories which interest us, belong to
the set M.

From (17A) it follows that,

x4/x5= C(x4—rD)/(x; + rD)
=C((2—1x,+rx; + 1) /(2 — P)x3+ rxs+ 1) .

(17A)

By substitution # = x,/x;, the last relationship could be represented as,
wW=C(QR—ru+r+r/x)/(2—r)+ru+r1r/x;y).

For the further consideration we can assume that tr/x; = O(t), because the trajecto-
ries belong to set M separated from zero and, therefore, x; > o, where o is some
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positive constant. Similarly, for the alternative state,
w=/CYQ—-nu +r+tr/x))(2—r) +r' +1'r/x5).
From the relationships for ¥’ and #” we can readily get,
u"=(1/CYQu + 1+ m)/(u + Q + ), (18A)
where u, and u, are of the same order as 7, and 7,, and
Q=((2-1N*+CrH)/(r(2—r)(1+C)) (provided r #0).

Consider two population states which are close enough to the diagonal. Using
(18A), we can get for these states,

!u’,’ - u’z’l = (I/C)l(Qul + 14 py) [y + Q + p2)
—(Quy + 1+ piy)) /(s + Q + piny)| = Sluy — o], (19A)
where,
S = (I/C)l((Q2 -1+ ,u“/|u, —w)/(uy + Q + 1)z + Q + ua)l -
It is easy to see that,
(y+ Q + pp) + Q + 1) > (Q + Opyz + p))*

Taking into account this inequality and assuming that p,/lu; —u,| <1, we will
obtain the following estimation:

S < (I/C)(|Q2 — 1]+ |up /|y = wa| D/uy + @ + pi )z + @ + p2)
<(1/CX|Q% = 1|+ D/ + Oy, + u43,))* .
Now let us show that,
(1/O)|Q% = 1|+ DAQ@ + Ouiz + pz2))* < 1. (20A)

Indeed, if @ =1, then Q2—1+1<C(Q + O(u;, + up))? given small enough
values for py, and u,,. If Q <1 then

1— Q024+ 1<C(Q + Oy + 1rn))? .
The last inequality is true if|
2<(14+C)Q%+ Oy, + ta2) (21A)
Now, in the chain of the inequalities,
4C/I(1+C)*<Q?<=4Cr’(2—r?<((2—n*+CrH)?
<0< ((2—r)?*-Cr?»)?

the last one is trivially true. Thus, 2 < (1 + C)@?, because from C > 1 it follows
that 2 <4C/(1+ C). It is clear, that for small enough values of u;, + u,,, the
inequality (21A) holds, so that S < 1. Therefore, if p,,/ju; — u,| < 1, then S < 1 and
|l — us| < juy — uy|.
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Let the second of the considered population states coincide with the stable point
X*=XP, X2, X3, XT), so that w,=XP/XTF. Let x=(x,x,,x;,%x;) and
x"=(x}, x5, x5, x3) be two consequent population states taken over the full
period. The last result means, that if x deviates from the diagonal less than for
|Xa/x3 — X3/ X5, then x7/x7 is closer to X /X5 than x,/x,. We can conclude, that
each trajectory starting close enough to the diagonal enters into the neighborhood
of the stable point X, with a radius of the same order as that of the distance
between the current point of the trajectory and the diagonal. Starting from this
moment y;, > |uy — w,], i.6. py,/juy —u,| > 1, and then the previous estimations are
false. Thus, the trajectory could jump out of the neighborhood. Let us estimate the
radius of the new neighborhood. According to (19A),

|ut —u3| < (YOWIQ? — Dy — wa) [y + @ + pz)uz + @ + pzo) [}
+ |t [y + @ + )z + Q@ + p2)| -
Using the above estimation of S, we can get from last inequality:
i —us| < S luy — us| + O(uyy)

where S, < 1. It is clear, that u,, vanishes, because the trajectory converges
monotonically to the diagonal. Thus, the radiuses of the considered two neighbor-
hoods should also vanish. Therefore, the trajectory converges to the stable point
X, possibly with dumping oscillations around X.

This concludes the proof that a global stable polymorphism exists in this system.

Appendix 4
Proof of the Proposition 4

Consider some regular trajectory, i.e. some environmental state i exists such that
the condition (6) holds. Starting from the state i and iterating the formulae of
evolution (1) along the period, it is easy to connect x; in the state i in two
neighboring cycles:

£y = (L, /Qx; + Dy, (22A)

where ﬁji is determined by (5); j is the haplotype number (j =1, 2, 3, 4); and x;, is
the frequency of the haplotype j at environmental state i (i =1,...,p). Let us
examine a regular trajectory beginning from a moment, when the signs of D for all
pairs ji become stabilized and the sequence (6”) is ordered in accordance with
increasing integral fitnesses L. If the last sequence is not an increasing-for-sign one,
then for some pair of numbers, j, and j,, ;, the following inequality holds:
L>L, ., D,;20, b i<0. (23A)
Using (22A), we obtain,

£500%5, o= (L, IW)x, + D )L, /W), , i+ 1D,

gl g +11 g +11°
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then, taking into account the signs of D as determined by (23A), we finally obtain:
ﬁ}q,./)?j’-q o 2 WX L, %, L0 - (24A)

Then, it follows from (23A), that
‘ t=L,[L

g+ 1 > 1’
and, in accordance with (24A), the frequency of haplotype with number j, . ,
converges to zero exponentially with the power In(?).

Therefore, for regular trajectories the assumption of a disturbance of increasing-
for-sign of an ordered sequence (6”) results in extinction of at least one allele along

the trajectory. The proposition is thus proven.



