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In this paper, we describe some regularities of the behavior of linkage dis-
equilibrium, D, under temporal environmental fluctuations in infinite panmictic
populations with non-overlapping generations and diploid and haploid selecton
regimes. Different types of environmental variation ware considered. Our analysis
shows that under two-locus haploid selection with any period length. there exists an
environmental state (e.s.) where D can change the sign (between periods), but not
more than once. The direction of this change is fully determined by a special quan-
tity, “integral fitness disequilibrium coefficient,” A, which is calculated from
genotypic fitness in environmental states. If 4 =0, then two e.s. exist with only one
change of the sign in each. Special types of environments (sub- or super-
multiplicative) common in theoretical modelling can be mentioned where the sign
of D between periods behaves rather simply for any considered e.s. It can be shown
that under sufficiently small rates of recombination r < r* for any period length p
in every e.s. the sign of D can change no more than once; the border rx is calculated
as a function of fitness values which decreases with decreased differences between
the fitnesses. The obtained results were applied to various types of fitness functions.
Thus, cases of additive effects of fitness loci on the selected trait under various
hypotheses about the selection regime in changing environment were considered in
detail. In particular, we showed that the sign of D generated by selection is, in a
sense, a nonsymmetrical function when one considers possible forms of fitness
dependence on the selected trait: negative D’s are more probable. These results are
also extended to the diploid case with an additively formed selected trait. 1995

Academic Press. Inc.

I. INTRODUCTION

Linkage disequilibrium is one of the key notions in population genetics.
Analysis of behavior of linkage disequilibrium coefficients (D) is a
necessary step in the study of different problems including the nature of
stable polymorphic equilibria (Karlin, 1975; Karlin and Feldman, 1978;
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Lewontin 1974), discriminating factors reponsible for the observed pat-
terns of variation in real populations (Thomson and Klitz, 1987; Robinson
et al, 1991), evolution of sex and recombination (Feldman er al,
1980; Kondrashov, 1984; Felsenstein, 1988, Maynard Smith, 1988a, b;
Charlesworth, 1990), etc. For example, the dynamics of the sign of D is
considered to be a crucial factor determining the fate of recombination
modifiers in apopulation (Felsenstein, 1988; Charlesworth, 1993).

In this paper we describe some regularities of the behavior of the sign D
under environmental fluctuations in infinite panmictic populations with
non-overlapping generations. Both diploid and haploid selection regimes
were considered. The latter is of special importance providing the
possibility of analyzing factors not related to heterozygote advantage.

II. HAPLOID SELECTION

Description of the Model

The dynamics of a two-locus diallelic system with panmixia under
haploid selection can be described by the evolutionary operator

Xy=Ay(x; —rD)/W,, Xy =Ap(xs+rD)/W,,
xh=A,(xys+rD)/W,, Xy =Aplx4s—rD)/W,,

(h

which transforms the standard simplex X of the four-dimensional space of
the genotype frequencies into itself. Here, 4,, is the fitness of haplotype
number h (h=1, 2, 3, 4) in the ith environmental state (1 <i< p), x and x’
are the haplotype frequencies in two consecutive generations, r is the
recombination rate between selected loci, D = x, x, — x, x; is the coeflicient
of linkage disequilibrium, W,= A4, x + A;3X,+ A;3 X1+ A4 X4 +rDo, is the
population mean fitness, and o, =A,; + Az — 4;; — A4

Let the geometric mean fitness of the genotype h form generations 7 to
j (j=i) in the power s=j—i+ 1 be:

A{;li:Aih’ ]f ]=l,
A =dg ki A 0 >0 (h=1,2,3,4).

For a periodic environment (p<oc), if j=i+ p—1, then the quantity
AY+7- DI g the product of fitnesses across the period:

A;1i+p,“|i=Ah=/11h}‘2lt"'Aph (hzla 29 3’4)

The quantity A!/*7~ D" will be referred to as the integral fitness.
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Clearly, 4,4 4,4 and A, 2,4 characterize fitnesses of “complementary” pairs
of genotypes and, as will be shown below, their proportions affect the
behavior of the sign of D along trajectories. For this, we consider the quan-
tity 8,= 4, 4,4 — 412 A3, which, by analogy, could be referred to as the coef-
ficient of fitness disequilibrium. Analogously, we define also the coefficient
of integral fitness disequilibrium over the period as A=A, A, — A, A, and
in the general case, j|i-fitness disequilibrium as

AV = A AL — AL AN

Note that A“*7~Dli= 4 and 4'"=6, for all i=1,2,.

In the case of periodic environments, the states of the population within
a period will be enumerated corresponding to the environmental states.
Thus, for an arbitrary period, x"'=(x{", x{, x{", x{") is the set of
haplotype frequencies in the environmental state i (i=1, .., p). The reason
for such a designation is that in the further analysis it will be enough to
consider only the population changes within a period.

The next statement generalizes for periodic environments a relationship
obtained earlier (Eshel and Feldman, 1970; Feldman, 1971) for constant
selection regime.

LemMma 1. For any ordered pair of environmental states j,i (j>1i,
j—i<p), coefficients of linkage disequilibriuvm D'’ and D'" corresponding
to any two consequent moments within a period obey the relationship

J—1

DU .Q AJ*”'(]—r)"‘ u) (|>+r Z A"”'Q (1 )]7;—1C
+(1—r)f"Aé""A{;*”"QﬂD‘”, (2)
where
Q=(W,_ W, - W)%  C=[0—1")x"x +xx1"],

T =x{"+ x{) — DY,
and
0<t<l, Q,C,20 (r=i .,j— 1)
This connection could be represented also in the form
DY) = .Q,,-(Af' W O(ry ¥, ) x{xy)
Q(1=ry "4+ Or) ¥, D', (2")
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where ¥, and V,;Q; are bounded while the boundary grows with the
difference j —i < p. { For the proof, see Appendix 1.)

One should mention that in addition to D'’ and D'/, the relationships
(2) and (2’) include also haplotype frequencies and linkage disequilibria for
all intermediate states between i and j. Thus, these relationships should not
be considered as evolutionary equations for D. Nevertheless, these rela-
tionships are important for obtaining some further estimates.

The connection between consecutive values of D could also be of interest
in attempts to discriminate between selection and hitch-hiking of a neutral
locus linked to a selected one (e.g., Asmussen and Clegg, 1981).

For each environmental state i/ one can consider a sequence A°V,
A2, AP We call a state i essentially positive if all elements of
this sequence are non-negative and essentially negative if all elements are
non-positive.

LemMMA 2. If integral fitness A is positive, then at least one essentially
positive state exists, while if 4 <0, then at least one essentially negative state
exists. If A=0, but at least one state exists with § #0, then both essentially
positive and negative states exist. If 6=0 for each of the environmental
states, then each state is positive and negative simultaneously. (For the proof,
see Appendix 2.)

Based on these results, we can now analyze how the coefficients affect the
sign of linkage disequilibrium.

PROPOSITION 1. Let the integral fitness 4 be non-zero. Then one can find
within the period such an environmental state, i (1 <i< p), that for a finite
number of generations the sign of D' becomes the same as that of A, and
only one change in the sign of D' is possible along the trajectory. If 4 =0,
but fitness disequilibrium & is non-zero in at least one of the states, then there
exist of environmental states E, and E, with no more than one change of
sign{D) in each of them. (The proof of this result can be found in
Appendix 3.)

Thus, with any period length, there exists an environmental state where
the behavior of D is, in a sense, rather simple: sign(D) could change
(between periods!) no more than once. The direction of this change is fully
determined by the integral fitness disequilibrium coefficient 4, which is
calculated from genotype fitnesses across the period. In the other environ-
mental states, the number of changes in the sign of D might be higher and
numerous examples of such kinds could easily be found. Based on com-
puter experiments, we can hypothesize that the upper limit of the number
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of changes in the sign (D) exists and it is equal to the length of the
period (p).

We showed above that in any cyclical environment, one can find within
the period some environmental states with simple behavior between
periods along the trajectory. Below, an interesting and rather general class
of environments is considered with simple behavior of D in all states. In
accordance with the terminology introduced by Eshel and Feldman (1970),
a state { could be referred to as: (a) supermultiplicative, if &,>0;
(b) submultiplicative, if d; <0; and (c) multiplicative, if §,=0.

If all p states (p < oc) belong to one of these three types, we will call
such an environment a “concordant environment,” and correspondingly,
one could recognize three types of concordant environments: super-
multiplicative, submultiplicative, and multiplicative.

PROPOSITION 2.  Along any trajectory of the system (1) the linkage dis-
equilibrium coefficient D becomes, after some number of generations, non-
negative if the environment is supermultiplicative and non-positive if the
environment is submultiplicative. The number of generations needed for the
stabilization of sign(D) depends on the trajectory, but the number of steps is
always finite. If the environment is multiplicative, then sign(D) remains
constant along the trajectory.

This proposition directly follows from Proposition 1.
Another type of simple behavior of sign(D) can be demonstrated when
the recombination rate between loci is small. Namely, the following is true.

PrOPOSITION 3. If the coefficient of integral fitness disequilibrium A is
non-zero, then with small enough r no more than one-change in the sign of
D is possible for each of the environmental states.

Proof. In order to obtain the connection between D’s in the state j in
two neighboring periods, let us put i=j— p into (2'):

D’j’=Qj,-(Aj*”’+ Oo(r) .{,lﬁ) x‘l"’xf,”
+Q2,((1=r)/ = A4+ O(r) ¥,,) DY,

Clearly, with small enough », the multiplier at D) is positive while that at
x{x{ is equal to sign(4/~'Y~r) =sign(4). Let sign(4) be positive. If D'
is also positive, then, according to the previous relationship, the value
D"+ 7 will necessarily be positive also. Thus, we have only two possibilities
for the sign dynamics of the sequence D'”, DU+7) DY+ which is either
always negative or starting from some moment becomes positive and
remains positive,
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The same consideration could be provided for the case 4 <0.

The above general statements can be applied to various fitness functions.
Consider in more detail situations arising when the fitness values are
dependent on a trait controlled by additively acting genes. Then, changes
of environmental states can be simply interpreted as temporal changes of
the optial (i.¢., selected for) value for the trait.

Let the trait under consideration be dependent on allelic content of the
selected loci, according to

a A
b m m+d, (3)
B m+dy  mtdyt+dy,

where d, and dy (d,, dg = 0) are the effects of allele substitutions and m is
the trait value of genotype ab.

We will define the fitness of a genotype with trait value z at an environ-
mental state i as F(z —z;), where z, 1s the current optimal level of the trait
and F(-) is the function transforming the deviation of z from :z, into the
fitness. Then we can write

An=Fm+d,+dg+ L), A=Fm+d,+ L)),

An=Fm+dgy+ L;), Aa=Fm+ L)),

where L, defines the shift of the maximum of the fitness function. Clearly,
genotypic fitnesses in each of the environmental states depend on the fitness
function F and the set L=(L,, L,, .., L,). If the set L does not change in
time, one can speak about a periodical environment.

To simplify the formulae, we denote x = (2m +d, + dy)/2, m+d,=x+¢,
mtdg=x—¢', m=x—¢ m+d,+dy=x+¢ (¢ <¢). The convenience of
these designations is that the members of the pairs (m+d,, m+dg) and
(m,m+d,+dy) are equally distant from the point x. It should be men-
tioned that with equal effects of loci A/a and B/b ¢ =0.

In these terms the coefficient of fitness disequilibrium at the environ-
mental state / can be written as

S{F)=F(x+e+L)Fx—¢e¢+L)—Flx+¢&+L,)Fx' —e+L,). (4)

ProPOSITION 4. [f log(F) is convex up (convex down), then the environ-
ment defined by function F is submultiplicative (supermultiplicative). The
condition of convexness or concaveness is necessary and sufficient for the
environment to be sub- or supermultiplicative under any mode of cyclical
changes of the optimum (i.e., for any set L=(L,, L,, .., L,)).
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Proof. 1f log(F) is a convex up function then for any values of x, ¢, ¢
(¢' < &), the following inequality holds:

log(F(x+¢&+ L)) +log(F(x—&g+ L))
<log(Flx+¢&+ L))+ log(Flx—e' + L)) (5

(see, e.g., Hardy, 1922). Thus
Fix+e+L)Fx—e+L)<F(x+¢&+L)Flx—¢+L). (6)

Therefore, §,(F}<0. On the other hand, if for all x, ¢ & (& <e), the
inequality (5) is true, then log(F) is convex up. This follows, from example,
from the standard definition of a convex up function,

log(F(x+e+ L;))+1log(F(x—e+ L,)) <2 log(F(x+ L)),

resulting from (5) when ¢’ =0.
The case of convex down log(F) can be considered in the same manner.

III. DiPLOID SELECTION

The evolutionary operator in this case can be written as

Xi=(W,x,—ri D)W, xh=(Wyxs+ri, D)W,
Xy=(Wyxy+riy D)W, xX4=(Wyxy—ri D)W,

(7)

where x and x’ are haplotype frequencies in two consecutive generations;
D, as usual, is the linkage disequilibrium;

Wh=2h1x1+}.h2x2+;L,,3X3+/1h4X4, h=l,2, 3,4

is the marginal fitness of the haplotype i; the mean fitness of the population
18!

W:X‘l W1+XZ Wz +X3 W3+X4 W4.

Coefficient 4,, is the fitness of the zygote (4, j); 4, denotes the fitness of
double heterozygotes (we assume here that A,=4,,=4,). As in the pre-
vious section, we can calculate the fitness disequilibrium coefficients
=W, W,— W, W, for each of the environmental states.

It should be mentioned here that the evolutionary operators for the
haploid (1) and diploid (7) cases use different census-points. This was done
only for the sake of technical convenience.
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For the following analysis we need a “direct” presentation of é in the
form
0=0"—D(Ai3 A4 — A d5), (8)

where

8 = x{(Ap1 Agy — Az Aa)) + X Xo( A1y Ay — A3 A) + Xy X3( A1y Ags ~ A1 Aaa)
+ X XAy Aag = Aay Aaa) + X34 2 Aar — Aaa daa)
+ X3 x3(Aaz A1z — A3 dan) + XaX4(A12 Aas — A3 A22)
+ X3 A3 day — A33 Az) + X3 X4(A13 Aas — Aaa A33)
+ X3 A1g Aag — Arahng).

Coeflicient A, A4, — A2, 44, at X7 can be considered as a measure of fitness
disequilibrium of progenies resulting from the union of gametes 1,2, 3,4
with the gamete A. Let us call 4,4, — 4y, 4, partial coefficients of fitness
disequilibrium. Clearly, these quantities are constants, while é changes over
generations according to the changes in genotype frequencies (in contrast
to the case of haploid selection, where J is also constant).

The signs of 6 and D are connected in accordance to the following
dynamic condition: if d <0 and D > 0, then the inequality

Xy xiy (Wix,—ri D) Wixs—riy D)
xXoxy (Wox,+ 1A D) Wixs+riyD)
WA Wax i xy—rdyDIW, x, + Wyxs—ri, D)
W, Wix,x,+rd,;DIW,yx,+ Wyxy+rd,; D)
W, W,x,x,
W, W,x,x;,

(9)

is true and D decreases along the trajectory (see also Eshel and Feldman,
1970). An analogous relationship holds when 6 >0 and D < 0. Therefore,
the population structure tends to change in such a manner that D will
become the same sign as that of . We should mention that, in contrast to
haploid selection, diploid selection regime can result in changes of sign(d)
along trajectory. This coevolution of signs may help us in understanding
the mechanisms of diploid selection on corresponding parts of the system
trajectories. The permanency of the sign of J along the trajectory in a con-
stant or variable environment is an important feature which singles out
“simple” systems. By analogy to the definition for the haploid case, it is
natural to call an environment super- or submultiplicative, depending on
the signs of 4.



LINKAGE DISEQUILIBRIUM 265

The variable J is a quadratic function of genotype frequencies. The suf-
ficient condition for the permanency of its sign follows from the known
criterion of Sylvester (Gantmakher, 1960). But this condition is not a
necessary one because J is defined only in the positive octant. We can also
formulate a clear necessary condition for the permanency of sign(é): partial
fitness disequilibria 4,, A4, — 4., 45, (A= 1, ..., 4) should be of the same sign.

The question of the permanency of the form ¢ on the simplex X' can be
cleared up by considering the 3-dimensional space containing the simplex
St x,+x,+x:< 1, x;, X5, x520; the equation d =0 defines in this space a
conic surface. Clearly, the form J will be of a permanent sign if this surface
has no intersection with the set S. A criterion for such a location of the sur-
face & =0 can be obtained but it will be rather cubersome.

For fitness disequilibria of a definite sign, it is easy to derive from (9) the
following:

PROPOSITION 5. Let O be either a plus-definite or a minus-definite quad-
ratic form. Then, along the trajectory, for a finite number of steps D will
achieve the same sign as 0.

Let us connect now the values of D in two consecutive generations for the
case of diploid selection. We have

D =x\x, —xoxy = (W, Wyx, x4 —rAy D(W, x|+ Wyx,)+ (riy D)?
— Wy WXy Xy —Fhy D(W,yx, + Waxy) —(Fiy DY)/ W2
Therefore
D' = (8x, X4+ (Wy Wy —riy W) DY/ W?
or
D’ = (6x,x3+ (W, W, —ri,y W) D)/W?3
From this, it is easy to obtain the connection in a symmetric form
D' = (8(xy3x3+ x1X,) + (W, Wo+ W, Wy—2ri,s W) D)/(2W?), (10)
and then, with (8), we have finally
D' ={d'(x,x3+ x,x4) + D}/ (2W?), (1)
where

Q= —(A1p 43— Ay Adn) (X X3+ x,X4) + W W+ W, W, —2rk s W.



266 KIRZHNER, KOROL, AND RONIN

After simple transformations, we obtain

Q=x7 Ay Az + X, X5 A1y Agy + Agy Aag) + X1 X5( A1y Az + Ay A33)
+ X X4( Ay Ay + Agy Aog) + X341 Aus + X3 X3(Aas Ags + Aa As3)
+ x5 X4(A12 Aag + Arg ) + X3 A3 Aus + X3 X4(A 13 Aag + Arg As3)
+ X3 A Asa (1 =2r) Ay W.

Now it is clear that Q from (11) is non-negative if r <0.5.
From (11) some conclusions can also be derived about the behavior of
sign{ D):

PROPOSITION 6. If in each of the states of a cyclical environment the
quadratic forms 6. (i=1,2, .., p) are all positive or all negative and r <0.5,
then no more than one change in sign(D) is possible in each of the states
between periods along the trajectory. This change can occur only if in the
initial state sign( D) sign{(d')= —1.

Comment 1. The condition r<0.5 is biologically justified. However,
one can not exclude, in principle, situations with r slightly exceeding the
level 0.5 (Carter and Robertson, 1952). Akin has showed that this border
value r =0.5 1s important also in other situations concerned with behavior
of two locus diploid systems (see Lyubich, 1992).

Comment 2. A difference in the situations described by Propositions 5
and 6 should be stressed here. The first proposition tells us that sign{D)
after a finite number of steps becomes equal to sign(d). But generally it
remains unknown whether or not the signs differ again in the future.
According to the second one, with sign definite form §', the sign of D can
change no more than once, but it is unknown if this change will occur at
all.

Comment 3. One could mention that Propositions 5 and 6 are diploid
analogs of Proposition 2 concerned with haploid selection regime.
However, Propositions 5 and 6 cannot be readily obtained from Proposi-
tion 2. Indeed, Proposition S is based on inequality (9), which has its
haploid analog but still needs to be proved. Moreover, the condition
r<0.5, which appears in Proposition 6, is not important in the haploid
case, indicating on (at least technical) difference of the haploid and diploid
cases.

These general results will be illustrated by some examples related
to selection for an additively controlled trait (x) with unequal effects of
the genes under consideration. The fitness of a genotype is described by a
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function F defined on the trait values x. The dependence of the trait value
on genes involved can be set by the table

aa Aa AA

bb m—d,—dy m—dy m+d,—dyg
Bb m—d, m m+da
BB m—d,+dy m+dy m+ds+dg.

where d, and dy are the substitution effects of loci 4/a and B/b. Now
denote d,=d, dy=d+¢ m=d, ¢20 (the case of equal gene effects
corresponds to ¢ =0). For the sake of simplicity, we assume that the above
parameters (m, d,, and dy) are constant.

Let ¢ < d, for definiteness. By ordering the genotypes in accordance with
increasing value of the selected trait we obtain

bb bb Bb bb Bb BB Bb BB BB
aa Aa aa AA  Aa aa AA Aa AA
m—Qd+e)s<m—(d+e)s<m—dsm—e<m<m+es<m+d<m+{d+e)<m+(2d+¢).
We have here four pairs of the trait values which are equidistant from the

double heterozygote. For simplicity, let 2d+e=¢,, d+e¢=¢,, d=e¢;,
¢=¢,. Then, the fitness matrix can be written in the form

AB Ab aB ab

AB Fm+e) Fim+4e,) Fm+te,) Fm)

Ab  Fim+e;) Flm—egy) F(m) Flm—e¢,)
aB  Fm+e,) F(m) Fim+e,) Flm-—gs)
ab F(m) Fim—eg,) Fim—e¢,) Flm—g,).

By employing general expressions (8), we can obtain fitness dis-
equilibrium coefficients for this special case,

6=8"—[F(m+e;) lm—e¢y)— F(m) Flm)] D,
where
d' =xi[Fim+eg,) Flm)— Fim+¢,) Fim +¢;)]
+x,x,[Fim+¢)) F(im—¢,) — F(m+¢&,) Fim—¢g,)]
+x,x[Fim+e,) Fim—eg;)— Flm+e;) Flm+¢,)]
+xx,[Fim+e) Flim—eg)— Flm+e¢,) Flm—g,)]
+x3[ Fim + &3) Fim — ;) ~ Fim —&4) F(m) ]

+x,x3[ Fim4-e5) Fim —e,) — F(m+¢e,) Flm—g,)]
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+xyx,[ Flm+ey) Fim—¢g,)) — Flm—g,) Fim—¢,)]
+ X[ F(m+e¢,) Fim—¢3) — F(m) Fim +¢,)]
+x3x,[ Fm+e,) Fim—e¢) — Flm+¢,) Flm—¢&,)]
+x3[Fm—¢,) Fim)— Flm — &) Fim —¢3)]. (13)
If the function F is logarithmically convex up, then all of the coefficients
in (13) are non-positive. Indeed, in these coefficients,
Fim+e¢)) Fim)— Fim +¢&,) F(m + ¢3),
Fim+e)) Fim—g¢,) — F(m+¢,) Flm—¢,),
Fim+e,)) Flm—¢gy) — Fim+&;) Flm + ¢,),
Fim+e)Fim—eg))—Fm+¢, F(m——sz),

F(m+¢,) Flm —¢,) — F(
Fim+e) Fim—¢,)—Flm—¢g,
Fm+e,)

Fim—e,),

)
Fim+e;) Fim—eg,)— Fim—¢,) F(m),
m+ée,)
)

( —61)a

m—gy)— F(m) Flm + ¢g,),

K K
Fm+e))Fim—e))— Fim+¢g,) Flm—¢,),
K

Fim—¢g)) Fim)— F(m —¢&,) Flm —¢&,),

because of (12) the sums of arguments of the first pairs of multipliers are
equal to analogous sums for the second pairs, while the second pairs lie
within intervals delimited by elemented of the corresponding first pairs.
Therefore, all of them obey the functional relationship

log(F(x +¢)) +log(Fx —e))<log(F(x+¢')) + log(Flx —¢')) (e’ <&),

which is characteristic for a convex up function. For convex down func-
tions log(F) the coeflicients will be non-negative. The above calculations
and the Proposition 6 lead to the following statement.

PrRoposITION 7. With selection for an additively formed trait in an
environment with p states (p < o) linkage disequilibrium D changes the sign
no more than once, if the fitness function F is logarithmically convex. The
change is possible only from plus to minus if F is log-convex up and from
minus to plus if F is log-convex down.

1V. DiscussioN

Understanding the behavior of the sign of linkage disequilibrium is an
important tool for studying different aspects of multilocus system
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dynamics, including polymorphism maintenance and mutation—selection
balance, revealing the nature of past evolutionary steps (Thomson and
Klitz, 1987), genetic architecture of quantitative traits, evolution of recom-
bination and mating system, etc. Here, we have studied some rather general
regularities concerning the question of how temporary variations in
selection coefficients affect the sign of linkage disequilibrium along the
trajectory of two-locus systems, in both haploid and diploid cases.

For cyclical haploid selection the existence of an environmental state has
been shown for which the sign of linkage disequilibrium can be changed
from period to period along the trajectory no more than once. The very
possibility of this change depends on the sign of a selection parameter
“integral fitness disequilibrium.” It is clear that this result is a generaliza-
tion of the corresponding clear fact known for constant selection regime
(Eshel and Feldman, 1970; Feldman, 1971). We hope that it could be use-
ful in attempts to construct a two-locus analog of Fisher’s theorem
(namely, helping to overcome “the initial point effect”). We have also
shown that with tight linkage the above property is characteristic for all
environmental stages within the period.

In general, the analysis of fitness disequilibrium enables us to discern a
class of variable selection systems (namely, the multiplicative systems) with
a relatively simple behavior of D along the trajectory (in the sense of
Propositions 2 and 6). This approach was used to study the effect of selec-
tion for an additively controlled two-locus trait in changing environment
on the dynamics of sign(D).

Consider some examples of stabilizing selection defined by some variants
of functions F(x) with optimum value of the trait changing cyclically along
the period. First, it should be mentioned that for double differentiable F the
condition of the convexity (up) of the log(F) (log-convexity) can be written
in the form:

0=F" —F?<0. (14)

Some qualitative conclusions can be drawn from this condition. The
property of a function to be a log-convex defines a more broad class of
functions than the convex ones only. Therefore, one could expect that selec-
tion against deviations from an optimum will favor negative, rather than
positive, linkage disequilibria (e.g, Mather, 1943; Maynard Smith,
1988a, b). Moreover, by replacing, for the sake of simplicity, one F by
another, one can in principle replace also the type of F (in the above
sense). As a consequence, a qualitatively different dynamics can be
obtained. The condition (14) can be considered as a tool to control the
possibility of such a transition.

Another point of interest is the estimation of the form of F based on
observations on quantitative traits in real populations. Estimation of the
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intensity of selection in natural populations based on phenotypic traits
occupies an important place in the range of evolutionary problems and is
still far from being solved, though considerable progress has been made in
recent years (Lande and Arnold, 1983; Manly, 1985; Endler, 1986;
Mitchell-Olds and Shaw, 1987; Jain, 1990). Especially attractive in this
connection seems to be the non-parametric description of fitness surfaces
{Schluter, 1988), since it has been shown that the dynamics of multilocus
systems that are subjected to selection may strongly depend on the dis-
tribution shape adopted (Turelli and Barton, 1990). It is clear that for the
same set of data one can suggest rather different (in the sense of
criterion (14)), approximations which give, nevertheless, the same statisti-
cal precision.

In population genetic models discussed in the literature, we can find a
spectrum of various forms of F(x). Application of our criterion shows that
most of them lead to negative linkage disequilibria. For example,
Fx)=exp(—Clx—a|")(C>0,m=1,2, ...) is log-convex up for any set of
parameters C, m and a. This property is characteristic also to the family
F(x)=1—Clx—al™ By contrast, Gillespie’s (1976) fitness function
Fx)=c+ (1l —c¢)(1+a)x/(x+ x) is log-convex down. Therefore, according
to Proposition 7, no more than one change in sign(D) is possible, and, if
it occurs at all, it will be only from minus to plus.

We have considered examples with logarithmically convex up or convex
down functions for any value of their argument. But, taking into account
real range of variation of the selected trait, some other situations can also
be considered. For example, non-uniformity of the log-convexity within
the range of the argument change is characteristic of the function
Fx)=(1+(x—a)*/s*)~" (Korol et al., 1994). Here two domains of x exist
with F(x) log-convex up and down, correspondingly.

APPENDIX 1. Proof oF LEMMA 1

Let us prove first the relationship (2) for some pair i, i — 1. For this pair,
the relationship (2) can be presented in the form

D=0, , AT =) x4 r 2 Q, Gy

F(L=r) A A, DY (AL1)

Substitution of

Aiilli—l:(si—l’ Qi.i—lz(W,:Z])s
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and
C,',l — [(1 _T(i—l)) x(li—l)x(4i—l] +x(2i7”.x(3i>”‘[”‘”],

into (Al.1) gives a connection, which is essentially the same as that of
Feldman (1971):

DY=W 2 {8, ((1—r)x{Ux{=rd, y(x{Dxy N1 -

xR (=) Ay A2 DY)

Now we shall prove that, if (2) holds for some pair j, i then it is true also
for the pair j,i—~ 1.

Employing the evolutionary operator (1), let us express x{'x{ at the
environmental state / in terms of the frequencies of the state i — 1,

(i) i) 1) 2
XPx =2, AU =+ W,
where
Ci41=(1__.L.(f—l))xlli‘l)xitl‘l)+xlzi~l)x(3ivl)ril»fl),
P xli= D g =D plie ),

Substitution of the last expression and of D'’ from (Al.1) into (2) results
in:

DY =@, 47 =) xR =)

t=j—1
+rCy W+ Y 47N, (1=,

+(] _,.)jfiAéleAgfui_Qﬁ{&i_l(l ——r) x(lifl)xgivli
+r8, 1 Coo (U =r) A4 s DY W2 (AL2)
It is easy to check that the muliplier at x{~"x{~ " in (A1.2) is
Qj.:eldji”i_l(l —r)/

because
AN A e AT AL s =
QW AH=Q,, .
Also, the multiplier at D“~" in (A1.2) is

(= 1) gj—=11i—1 gj—1]i—1
(1—=r) AT AR,

65347 3.2
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due to the simple fact that

A171“/117”'/1“71“.,/":’7” A/fllrflAj—lllfl
At last, the multiplier at C; | is

2

i1 Aj71|i— l(] _r)j - lw(ifl).
Therefore, we can obtain (2) from (A1.2) with / being replaced by i—1.
This induction, together with the result for any pair i, i — 1 proves the rela-
tionship (2).

The inequalities €, C;, >0 are evident for all j and ¢ The inequality
0< 7t <1 can also be easily proved.

We have only to show that (2') is true. As in the previous case, we con-
sider (2’) for the simplest pair f,i—1:

DV'=W (8, | x\ x4+ (—rd, ;T "+ 4,251 —r) DY) (AL3)

Let now (2') be true for some arbitrary pair J, i. As before, we can express
x{Px{ in terms of the frequencies in state i —1:

i) =2 gi— i Dy i1 =1y yli=1 i~ 1
x{x =W AT AT DT =D )XY — DY)

‘\ Tati—Tig i) (i—1} (i—=T)ti—1)
=W 202Ny = D T ).

Using the last expression and (Al.1) for substitution of D'"' by D~ in
the formula (2'), we will easily obtain the required relationship for the pair
Joi—1.

The upper estimates for the quantities ¥,; and ¥,; immediately follow
from the above-described procedure of induction, but they are rather cum-
bersome and therefore not given here. However, it is clear that ¥, ; and
¥, are finite sums of bounded quantities with the number of summands
depending on the period length p. Thus, for any fixed p, one can indicate
a small enough r such that (2’) takes place.

APPENDIX 2. PRroor oF LEMMA 2

For the sake of convenience we will formulate the lemma in the
equivalent “multiplicative” form. Let

= Ay A fhin s (i=1, . p) (A2.1)
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be ordered circularly, and their product «,a,---«, exceed unity (ie.,
A>0). In these terms, Lemma 2 means that a number 7/ can be found such
that all consecutive products

iy 00 gy X O Ky ey OO

P10t

'ai—p+l’ (Azz)

are no less than unity. This can be proved by induction. For p=1 the
statement is clear. Let it be true for a cycle of the length p — 1. Consider the
cycle of length p. From a, a5 - --a, > 1 it follows that there exist some ;> 1.
Then a sequence of p —1 elements can be obtained from the mltldl one
(A2.1) with two elements «,_, and «; being substituted once by their
product a; a;:

- PO YR SIS T FUTE- JINP R S
Due to the condition of the induction, for this sequence a number 7 can be
found such that all consecutive products (like in (A2.2)) are no less than
unity. In this sequence the product «;---a;,, is followed immediately by
a;---a,, (o0, . In the sequence of products (A2.2) corresponding to the
intial sequence of the length p and beginning with the same position i/, the
elements «;---o;,; and o;---a;, a2, | are separated by the element
a;---o;,«; and this is the only difference between the two sequences. We
should mention in conclusion that «;---a;,,%;>1, because «,---a,
belongs to (A2.2) with cycle length p — 1 and therefore, is >1, while a,> 1
by assumption.

Thus, for 4 >0 the lemma is proved. The case 4 <0 can be considered
in the same way.

Let now 4 =0, but at least one state exists with non-zero J. By a small
perturbation of fitness, we can obtain a value 4 =4 either negative or
positive, depending on the chosen perturbation. If 4> 0 then according to
the above result for 4 >0 a positive sequence of the type (A2.2) exists,
while a negative one exists if 4 <0. It is important to note that these two
sequences are different if at least one J is non-zero. If 4 =0 and all § are
zeros, then in any sequence (A2.2) all the elements will be equal to [, which
is equivalent to the lemma (the case with some zero fitness coefficients can
also be included in this reasoning based on limiting transition ).

APPENDIX 3. Proor oF PROPOSITION |

For definiteness, assume 4 > 0 and denote by s a positive environmental
state. It should exist according to Lemma 2. For the state s, all fitness
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disequilibria 4°"°~/ (j=1,2, .. p) are non-negative and from 4>0 it
follows that at least one of these coefficients is strictly positive. Then, the
quantity

J-1

QA1 =ry X%+ Y 4N (1—r) ' TIC,

t=i
from (2) is also non-negative. So, according to (2), if D'’ is non-negative
in a period it will have the same sign in all subsequent periods. It means
also that sign(D) can be changed only once (in this case, from minus to
plus). If, in the environmental state s the initial value of D was positive,
then according to the above, the sign of D will remain unchanged along the
trajectory. Now we should show that, if the intial D is negative, it will
change the sign for a finite number of steps.

Consider two situations. Let in the initial cycle at least one value of D
be positive (denote this state as j). In the formula (2) connecting the states
j and s all coefficients are non-negative, because s is a positive state. Thus,
in the next period D will also became non-negative. Let us now assume
that in all states along the initial cycle sign(D)<0. For any pair of
consequent states the relation

X| Xy _ Ay A (x, —rD)(x4—rD)
Xyxy Ay Aa(xy+rD) (x5 +rD)

X Xqa—rD(x+x,—1D) <f_/1‘/14>
T T Xy X3+ rD(x;+ x5+ rDY IS

holds, and then

[
X1 X X1 X
144 > 14

' = El
x5 x5 X5 X3

because with D >0 the quantities rD(x, + x,—rD) and rD{x,+ x;+rD)

are non-positive. By iteration of this inequality along the cycle we will get
x1s+i)x(s+i) xs xs

R Sy Jpak Lk, (i=1,2,..,p) (A3.1)

(s+i)is+i) = i s s
X7 Oxy xi x5

where Z,=APF AT /AFTPACY 021 due to the assumption that
A=/ >0 (it is worth noting that Z; 1s, in fact, the multiplicative form of
A*1*=7)_ For at least one j the quantity 4*!*~/ is strictly positive, so that
Z;> 1. Thus, according to (A3.1), the value of D increases exponentially
and after a finite number of steps D will become positive at least in one of
the environmental states. This situation can be considered as an initial one
for the above-considered case. The case with A4 <0 can be considered
analogously.
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Let 4 =0. We should analyze here two situations. Consider first the case
when 0 #0 at least in one of the states. According to Lemma 2 in this case
both positive and negative states exist. The above reasoning can be applied
to each of them. If 4=0 and for all states § =0, then the proposition
follows immediately from the formula (2) of Lemma 1.
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